Heuristic and genetic algorithms for solving survivability problem in the design of last mile communication networks

被引:0
|
作者
Huynh Thi Thanh Binh
Nguyen Thai Duong
机构
[1] Hanoi University of Science and Technology,School of Information and Communication Technology
来源
Soft Computing | 2015年 / 19卷
关键词
Survivable network design; Fiber optic network; Shortest paths; Edge-disjoint paths; Heuristic algorithm ; Genetic algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
Given a connected, undirected and weighted graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V, E)$$\end{document}, a set of infrastructure nodes J\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J$$\end{document} and a set of customers C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C$$\end{document} include two customer types whereby customers C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{1}$$\end{document} require a single connection (type-1) and customers C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{2}$$\end{document} need to be redundantly connected (type-2). Survivable network design problem (SNDP) seeks a sub-graph of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} with the smallest weight in which all customers are connected to infrastructure nodes. SNDP has applications in the design of the last mile of the real-world communication networks. SNDP is NP-hard so heuristic approaches are normally adopted to solve this problem, especially for large-scale networks. This paper proposes a new heuristic algorithm and a new genetic algorithm for solving SNDP. The proposed algorithms are experimented on real-world instances and random instances. Results of computational experiments show that the proposed heuristic algorithm is much more efficient than the other heuristics in running time, and the proposed genetic algorithm is much more efficient than the other heuristics in terms of minimizing the network cost.
引用
收藏
页码:2619 / 2632
页数:13
相关论文
共 50 条
  • [1] Heuristic and genetic algorithms for solving survivability problem in the design of last mile communication networks
    Huynh Thi Thanh Binh
    Nguyen Thai Duong
    [J]. SOFT COMPUTING, 2015, 19 (09) : 2619 - 2632
  • [2] Heuristic Algorithms for Solving Survivability Problem in the Design of Last Mile Communication Networks
    Vo Khanh Trung
    Nguyen Thi Minh
    Huynh Thi Thanh Binh
    [J]. INTELLIGENT INFORMATION AND DATABASE SYSTEMS (ACIIDS 2012), PT II, 2012, 7197 : 519 - 528
  • [3] A survivable design of last mile communication networks using multi-objective genetic algorithms
    Lam Thu Bui
    Huynh Thi Thanh Binh
    [J]. Memetic Computing, 2016, 8 : 97 - 108
  • [4] A survivable design of last mile communication networks using multi-objective genetic algorithms
    Bui, Lam Thu
    Binh, Huynh Thi Thanh
    [J]. MEMETIC COMPUTING, 2016, 8 (02) : 97 - 108
  • [5] Heuristic and Genetic Algorithms for Solving the Virtual Topology Design Problem on Elastic Optical Networks
    Din, Der-Rong
    [J]. JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2017, 33 (02) : 305 - 327
  • [6] Solving timetabling problem using genetic and heuristic algorithms
    Thanh, Nguyen Duc
    [J]. SNPD 2007: EIGHTH ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING, AND PARALLEL/DISTRIBUTED COMPUTING, VOL 3, PROCEEDINGS, 2007, : 472 - 477
  • [7] Visual Design Solving the Last Mile Problem of Agricultural Science and Technology Informatization
    Li, Xue
    Jiang, Xunxun
    [J]. 2013 3RD INTERNATIONAL CONFERENCE ON SOCIAL SCIENCES AND SOCIETY (ICSSS 2013), PT 4, 2013, 35 : 60 - 63
  • [8] Last mile problem in overlay design
    Dube, P
    Liu, Z
    Sahu, S
    Silber, J
    [J]. GLOBECOM '05: IEEE Global Telecommunications Conference, Vols 1-6: DISCOVERY PAST AND FUTURE, 2005, : 920 - 925
  • [9] Role of the Internet in Solving the Last Mile Problem in Medicine
    Hesse, Bradford William
    [J]. JOURNAL OF MEDICAL INTERNET RESEARCH, 2019, 21 (10)
  • [10] Solving Last Mile Problem as a Personal Service for Citizens
    Svitek, Miroslav
    Kozhevnikov, Sergey
    Horazd'ovsky, Patrik
    Poludov, Dmitry
    Pogorelskih, Xenia
    [J]. 2019 XXI INTERNATIONAL CONFERENCE COMPLEX SYSTEMS: CONTROL AND MODELING PROBLEMS (CSCMP), 2019, : 84 - 89