The homotopy theory of operad subcategories

被引:0
|
作者
Benoit Fresse
Victor Turchin
Thomas Willwacher
机构
[1] Université de Lille,Laboratoire Painlevé
[2] Kansas State University,Department of Mathematics
[3] ETH Zurich,Department of Mathematics
关键词
Operads; Unitary operads; Mapping spaces; Homotopy;
D O I
暂无
中图分类号
学科分类号
摘要
We study the subcategory of topological operads P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf {P}}$$\end{document} such that P(0)=∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf {P}}(0) = *$$\end{document} (the category of unitary operads in our terminology). We use that this category inherits a model structure, like the category of all operads in topological spaces, and that the embedding functor of this subcategory of unitary operads into the category of all operads admits a left Quillen adjoint. We prove that the derived functor of this left Quillen adjoint functor induces a left inverse of the derived functor of our category embedding at the homotopy category level. We deduce from this result that the derived mapping spaces associated to our model category of unitary operads are homotopy equivalent to the standard derived operad mapping spaces, which we form in the model category of all operads in topological spaces. We prove that analogous statements hold for the subcategory of k-truncated unitary operads within the model category of all k-truncated operads, for any fixed arity bound k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}, where a k-truncated operad denotes an operad that is defined up to arity k.
引用
收藏
页码:689 / 702
页数:13
相关论文
共 50 条
  • [1] The homotopy theory of operad subcategories
    Fresse, Benoit
    Turchin, Victor
    Willwacher, Thomas
    JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2018, 13 (04) : 689 - 702
  • [2] Godement resolution and operad sheaf homotopy theory
    Beatriz Rodríguez González
    Agustí Roig
    Collectanea Mathematica, 2017, 68 : 301 - 321
  • [3] Godement resolution and operad sheaf homotopy theory
    Rodriguez Gonzalez, Beatriz
    Roig, Agusti
    COLLECTANEA MATHEMATICA, 2017, 68 (03) : 301 - 321
  • [4] Serre homotopy theory in subcategories of simplicial groups
    Garzón, AR
    Miranda, JG
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 147 (02) : 107 - 123
  • [5] Algebra plus homotopy = operad
    Vallette, Bruno
    SYMPLECTIC, POISSON, AND NONCOMMUTATIVE GEOMETRY, 2014, 62 : 229 - 290
  • [6] Open-Closed Homotopy Algebras and Strong Homotopy Leibniz Pairs Through Koszul Operad Theory
    Eduardo Hoefel
    Muriel Livernet
    Letters in Mathematical Physics, 2012, 101 : 195 - 222
  • [7] Open-Closed Homotopy Algebras and Strong Homotopy Leibniz Pairs Through Koszul Operad Theory
    Hoefel, Eduardo
    Livernet, Muriel
    LETTERS IN MATHEMATICAL PHYSICS, 2012, 101 (02) : 195 - 222
  • [8] Hypercommutative Operad as a Homotopy Quotient of BV
    Khoroshkin, A.
    Markarian, N.
    Shadrin, S.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 322 (03) : 697 - 729
  • [9] On the homotopy of simplicial algebras over an operad
    Fresse, B
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (09) : 4113 - 4141
  • [10] Hypercommutative Operad as a Homotopy Quotient of BV
    A. Khoroshkin
    N. Markarian
    S. Shadrin
    Communications in Mathematical Physics, 2013, 322 : 697 - 729