The sphaleron rate in SU(N) gauge theory

被引:0
|
作者
Guy D. Moore
Marcus Tassler
机构
[1] McGill University,Department of Physics
关键词
Thermal Field Theory; Lattice Gauge Field Theories; Solitons Monopoles and Instantons; QCD;
D O I
暂无
中图分类号
学科分类号
摘要
The sphaleron rate is defined as the diffusion constant for topological number \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {N_{\text{CS}}} \equiv \int {\frac{{{g^2}F\tilde{F}}}{{32{\pi^2}}}} $\end{document}. It establishes the rate of equilibration of axial light quark number in QCD and is of interest both in electroweak baryogenesis and possibly in heavy ion collisions. We calculate the weak-coupling behavior of the SU(3) sphaleron rate, as well as making the most sensible extrapolation towards intermediate coupling which we can. We also study the behavior of the sphaleron rate at weak coupling at large Nc.
引用
收藏
相关论文
共 50 条
  • [1] The sphaleron rate in SU(N) gauge theory
    Moore, Guy D.
    Tassler, Marcus
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (02):
  • [2] Instanton-sphaleron phase transitions in SU(2)-Gauge Theory
    Park, DK
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2003, 42 (01) : 41 - 49
  • [3] Sphaleron in the dilatonic gauge field theory
    Karczewska, D
    Manka, R
    PHYSICA SCRIPTA, 2001, 63 (01): : 87 - 92
  • [4] Sphaleron in the Dilatonic Gauge Field Theory
    Karczewska, D.
    Manka, R.
    2001, Royal Swedish Academy of Sciences (63)
  • [5] Renormalizability of noncommutative SU(N) gauge theory
    Buric, M
    Latas, D
    Radovanovic, V
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (02):
  • [6] The pressure of the SU(N) lattice gauge theory at large N
    Bringoltz, B
    Teper, M
    PHYSICS LETTERS B, 2005, 628 (1-2) : 113 - 124
  • [7] Local gauge transformation for the quark propagator in an SU(N) gauge theory
    Aslam, M. Jamil
    Bashir, A.
    Gutierrez-Guerrero, L. X.
    PHYSICAL REVIEW D, 2016, 93 (07)
  • [8] Unification of non-Abelian SU(N) gauge theory and gravitational gauge theory
    Wu, N
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2002, 38 (04) : 455 - 460
  • [9] Explicit multimonopole solutions in SU(N) gauge theory
    Weinberg, EJ
    Yi, PJ
    PHYSICAL REVIEW D, 1998, 58 (04)
  • [10] DYNAMICS OF SU(N) SUPERSYMMETRIC GAUGE-THEORY
    DOUGLAS, MR
    SHENKER, SH
    NUCLEAR PHYSICS B, 1995, 447 (2-3) : 271 - 296