On Finsler manifolds with hyperbolic geodesic flows

被引:0
|
作者
Yong Fang
机构
[1] CY Cergy Paris Université,Département de Mathématiques
来源
Archiv der Mathematik | 2021年 / 117卷
关键词
Finsler metric; Kähler hyperbolicity; Anosov flow.; 37A35; 34D20; 37D35;
D O I
暂无
中图分类号
学科分类号
摘要
Let (M, F) be a closed C∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\infty $$\end{document} Finsler manifold and φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} its geodesic flow. In the case that φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} is Anosov, we extend to the Finsler setting a Riemannian vanishing result of M. Gromov about the L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document}-cohomology.
引用
收藏
页码:233 / 239
页数:6
相关论文
共 50 条