On the nilpotency of the Jacobson radical for noetherian rings

被引:0
|
作者
Henning Krause
机构
[1] Fakultät für Mathematik,
[2] Universität Bielefeld,undefined
[3] D-33501 Bielefeld,undefined
[4] Germany,undefined
来源
Archiv der Mathematik | 1998年 / 70卷
关键词
Natural Number; Noetherian Ring; Jacobson Radical;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a right noetherian ring of Krull dimension \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \kappa $\end{document} and denote by J its Jacobson radical. Using a new definition of the powers \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ J^\alpha (\alpha $\end{document} any ordinal) it is shown that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ J^{\omega \kappa +n}=0 $\end{document} for some natural number n.
引用
收藏
页码:435 / 437
页数:2
相关论文
共 50 条