The Rotation χ-Lattice of Ternary Trees

被引:0
|
作者
Jean Marcel Pallo
机构
[1] LE2I. Université de Bourgogne B.P. 47870 F-21078 Dijon-Cedex France e-mail: pallo@u-bourgogne.fr,
来源
Computing | 2001年 / 66卷
关键词
AMS Subject Classifications: 06A07; 06A08.; Key Words: Rotation lattice; ternary trees; k-ary trees.;
D O I
暂无
中图分类号
学科分类号
摘要
This paper generalizes to k-ary trees the well-known rotation transformation on binary trees. For brevity, only the ternary case is developped. The rotation on ternary trees is characterized using some codings of trees. Although the corresponding poset is not a lattice, we show that it is a χ-lattice in the sense of Leutola–Nieminen. Efficient algorithms are exhibited to compute meets and joins choosen in a particular way.
引用
收藏
页码:297 / 308
页数:11
相关论文
共 50 条
  • [1] The rotation χ-lattice of ternary trees
    Pallo, JM
    COMPUTING, 2001, 66 (03) : 297 - 308
  • [2] ON THE ROTATION DISTANCE IN THE LATTICE OF BINARY-TREES
    PALLO, J
    INFORMATION PROCESSING LETTERS, 1987, 25 (06) : 369 - 373
  • [3] SOME PROPERTIES OF THE ROTATION LATTICE OF BINARY-TREES
    PALLO, J
    COMPUTER JOURNAL, 1988, 31 (06): : 564 - 565
  • [4] AN ALGORITHM TO COMPUTE THE MOBIUS FUNCTION OF THE ROTATION LATTICE OF BINARY-TREES
    PALLO, JM
    RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1993, 27 (04): : 341 - 348
  • [5] Ternary search trees
    Bentley, J
    Sedgewick, B
    DR DOBBS JOURNAL, 1998, 23 (04): : 20 - +
  • [6] Generating Functions for Ternary Algebras and Ternary Trees
    Uadilova, A. D.
    RUSSIAN MATHEMATICS, 2010, 54 (08) : 57 - 66
  • [7] NoBLE for Lattice Trees and Lattice Animals
    Robert Fitzner
    Remco van der Hofstad
    Journal of Statistical Physics, 2021, 185
  • [8] NoBLE for Lattice Trees and Lattice Animals
    Fitzner, Robert
    van der Hofstad, Remco
    JOURNAL OF STATISTICAL PHYSICS, 2021, 185 (02)
  • [9] Historical Lattice Trees
    Cabezas, Manuel
    Fribergh, Alexander
    Holmes, Mark
    Perkins, Edwin
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 401 (01) : 435 - 496
  • [10] Lattice embeddings of trees
    Imrich, Wilfried
    Kovse, Matjaz
    EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (05) : 1142 - 1148