Approximations for node-weighted Steiner tree in unit disk graphs

被引:0
|
作者
X. Xu
Y. Wang
H. Du
P.-J. Wan
F. Zou
X. Li
W. Wu
机构
[1] Illinois Institute of Technology,Department of Computer Science
[2] Tsinghua University,Institute of Theoretical Computer Science
[3] University of Texas at Dallas,Department of Computer Science
[4] Lanzhou University,School of Mathematics and Statistics
来源
Optimization Letters | 2010年 / 4卷
关键词
Node-weighted Steiner tree; Unit-disk graph; Approximation algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
Given a node-weighted connected graph and a subset of terminals, the problem node-weighted Steiner tree (NWST) seeks a lightest tree connecting a given set of terminals in a node-weighted graph. While NWST in general graphs are as hard as Set Cover, NWST restricted to unit-disk graphs (UDGs) admits constant-approximations. Recently, Zou et al. (Lecture notes in computer science, vol 5165, COCOA, 2008, pp 278–285) showed that any μ-approximation algorithm for the classical edge-weighted Steiner tree problem can be used to produce 2.5 μ-approximation algorithm for NWST restricted to UDGs. With the best known approximation bound 1.55 for the classical Steiner tree problem, they obtained an approximation bound 3.875 for NWST restricted to UDGs. In this paper, we present three approximation algorithms for NWST restricted to UDGs, the k-Restricted Relative Greedy Algorithm whose approximation bound converges to 1 + ln 5 ≈ 2.61 as k → ∞, the 3-Restricted Greedy Algorithm with approximation bound \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${4\frac{1}{3}}$$\end{document} , and the k-Restricted Variable Metric Algorithm whose approximation bound converges to 3.9334 as k → ∞.
引用
收藏
页码:405 / 416
页数:11
相关论文
共 50 条
  • [1] Approximations for node-weighted Steiner tree in unit disk graphs
    Xu, X.
    Wang, Y.
    Du, H.
    Wan, P. -J.
    Zou, F.
    Li, X.
    Wu, W.
    [J]. OPTIMIZATION LETTERS, 2010, 4 (03) : 405 - 416
  • [2] Node-weighted Steiner tree approximation in unit disk graphs
    Feng Zou
    Xianyue Li
    Suogang Gao
    Weili Wu
    [J]. Journal of Combinatorial Optimization, 2009, 18 : 342 - 349
  • [3] A PTAS for Node-Weighted Steiner Tree in Unit Disk Graphs
    Li, Xianyue
    Xu, Xiao-Hua
    Zou, Feng
    Du, Hongwei
    Wan, Pengjun
    Wang, Yuexuan
    Wu, Weili
    [J]. COMBINATORIAL OPTIMIZATION AND APPLICATIONS, PROCEEDINGS, 2009, 5573 : 36 - +
  • [4] Node-weighted Steiner tree approximation in unit disk graphs
    Zou, Feng
    Li, Xianyue
    Gao, Suogang
    Wu, Weili
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2009, 18 (04) : 342 - 349
  • [5] Two constant approximation algorithms for node-weighted Steiner tree in unit disk graphs
    Zou, Feng
    Li, Xianyue
    Kim, Donghyun
    Wu, Weili
    [J]. COMBINATORIAL OPTIMIZATION AND APPLICATIONS, PROCEEDINGS, 2008, 5165 : 278 - +
  • [6] Node-Weighted Steiner Tree and Group Steiner Tree in Planar Graphs
    Demaine, Erik D.
    Hajiaghayi, MohammadTaghi
    Klein, Philip N.
    [J]. AUTOMATA, LANGUAGES AND PROGRAMMING, PT I, 2009, 5555 : 328 - +
  • [7] Node-Weighted Steiner Tree and Group Steiner Tree in Planar Graphs
    Demaine, Erik D.
    Hajiaghayi, Mohammadtaghi
    Klein, Philip N.
    [J]. ACM TRANSACTIONS ON ALGORITHMS, 2014, 10 (03)
  • [8] THE NODE-WEIGHTED STEINER TREE PROBLEM
    SEGEV, A
    [J]. NETWORKS, 1987, 17 (01) : 1 - 17
  • [9] The Node-Weighted Steiner problem in graphs of restricted node weights
    Angelopoulos, Spyros
    [J]. ALGORITHM THEORY - SWAT 2006, PROCEEDINGS, 2006, 4059 : 208 - 219
  • [10] Online Node-weighted Steiner Tree and Related Problems
    Naor, Joseph
    Panigrahi, Debmalya
    Singh, Mohit
    [J]. 2011 IEEE 52ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2011), 2011, : 210 - 219