Property Πσ and tensor products of operator algebras

被引:0
|
作者
Jian-hua Zhang
Hong-ke Du
Hui-xin Cao
机构
[1] Shaanxi Normal University,College of Mathematics and Information Science
来源
关键词
Property Π; tensor product; nest subalgebra; CSL subalgebra; 47D45; 47B25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce Property Πσ of operator algebras and prove that nest subalgebras and the finite-width CSL subalgebras of arbitrary von Neumann algebras have Property Πσ. Finally, we show that the tensor product formula \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$alg_\mathcal{M} \mathcal{L}_1 \overline \otimes alg_\mathcal{N} \mathcal{L}_2 = alg_{\mathcal{M}\overline \otimes \mathcal{N}} (\mathcal{L}_1 \otimes \mathcal{L}_2 )$$ \end{document} holds for any two finite-width CSLs \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{L}_1 $$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{L}_2 $$ \end{document} in arbitrary von Neumann algebras \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{M}$$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{N}$$ \end{document}", respectively.
引用
收藏
页码:1680 / 1686
页数:6
相关论文
共 50 条
  • [1] PropertyΠσand tensor products of operator algebras
    Jian-hua ZHANG~+ Hong-ke DU Hui-xin CAO College of Mathematics and Information Science
    [J]. Science China Mathematics, 2007, (12) : 1680 - 1686
  • [2] Property IIσ and tensor products of operator algebras
    Zhang, Jian-hua
    Du, Hong-ke
    Cao, Hui-xin
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (12): : 1680 - 1686
  • [3] TENSOR PRODUCTS OF OPERATOR ALGEBRAS
    EFFROS, EG
    LANCE, EC
    [J]. ADVANCES IN MATHEMATICS, 1977, 25 (01) : 1 - 34
  • [4] AUTOMORPHISMS AND TENSOR PRODUCTS OF OPERATOR ALGEBRAS
    SAKAI, S
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1975, 97 (04) : 889 - 896
  • [5] TENSOR PRODUCTS OF UNBOUNDED OPERATOR ALGEBRAS
    Fragoulopoulou, M.
    Inoue, A.
    Weigt, M.
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2014, 44 (03) : 895 - 912
  • [6] Diagonals in tensor products of operator algebras
    Paulsen, VI
    Smith, RR
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2002, 45 : 647 - 652
  • [7] Operator space tensor products of C*-algebras
    Jain, Ranjana
    Kumar, Ajay
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2008, 260 (04) : 805 - 811
  • [8] Tensor products of C*-algebras and operator spaces
    R. Davidson, Kenneth
    I. Paulsen, Vern
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 59 (01) : 133 - 137
  • [9] Operator space tensor products of C*-algebras
    Ranjana Jain
    Ajay Kumar
    [J]. Mathematische Zeitschrift, 2008, 260 : 805 - 811
  • [10] Tensor products of C*-algebras with the ideal property
    Pasnicu, C
    Rordam, M
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 177 (01) : 130 - 137