Convex geometry and waist inequalities

被引:0
|
作者
Bo’az Klartag
机构
[1] Weizmann Institute of Science,Department of Mathematics
[2] Tel Aviv University,School of Mathematical Sciences
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents connections between Gromov’s work on isoperimetry of waists and Milman’s work on the M-ellipsoid of a convex body. It is proven that any convex body K⊆Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K \subseteq \mathbb{R}^n}$$\end{document} has a linear image K~⊆Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{K}\subseteq \mathbb{R}^n}$$\end{document} of volume one satisfying the following waist inequality: Any continuous map f:K~→Rℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f:\tilde{K}\rightarrow \mathbb{R}^{\ell}}$$\end{document} has a fiber f-1(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f^{-1}(t)}$$\end{document} whose (n-ℓ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(n-\ell)}$$\end{document}-dimensional volume is at least cn-ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c^{n-\ell}}$$\end{document}, where c>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c > 0}$$\end{document} is a universal constant. In the specific case where K=[0,1]n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K = [0,1]^n}$$\end{document} it is shown that one may take K~=K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{K} = K}$$\end{document} and c=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c = 1}$$\end{document}, confirming a conjecture by Guth. We furthermore exhibit relations between waist inequalities and various geometric characteristics of the convex body K.
引用
收藏
页码:130 / 164
页数:34
相关论文
共 50 条
  • [1] CONVEX GEOMETRY AND WAIST INEQUALITIES
    Klartag, Bo'az
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2017, 27 (01) : 130 - 164
  • [2] Isoperimetric inequalities, probability measures and convex geometry
    Barthe, F
    EUROPEAN CONGRESS OF MATHEMATICS, 2005, : 811 - 826
  • [3] Forward and Reverse Entropy Power Inequalities in Convex Geometry
    Madiman, Mokshay
    Melbourne, James
    Xu, Peng
    CONVEXITY AND CONCENTRATION, 2017, 161 : 427 - 485
  • [4] GENERALIZED CONVEX INEQUALITIES
    KARLIN, S
    NOVIKOFF, A
    PACIFIC JOURNAL OF MATHEMATICS, 1963, 13 (04) : 1251 - &
  • [5] SYSTEMS OF CONVEX INEQUALITIES
    HA, CW
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1979, 68 (01) : 25 - 34
  • [6] On Inequalities for Convex Functions
    Bernal-Gonzalez, L.
    Jimenez-Rodriguez, P.
    Munoz-Fernandez, G. A.
    Seoane-Sepulveda, J. B.
    JOURNAL OF CONVEX ANALYSIS, 2019, 26 (02) : 437 - 448
  • [7] Convex sets and inequalities
    Sin-Ei Takahasi
    Yasuji Takahashi
    Shizuo Miyajima
    Hiroyuki Takagi
    Journal of Inequalities and Applications, 2005
  • [8] Convex sets and inequalities
    Takahasi, Sin-Ei
    Takahashi, Yasuji
    Miyajima, Shizuo
    Takagi, Hiroyuki
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2005, 2005 (02) : 107 - 117
  • [9] Inequalities for convex sequences and nondecreasing convex functions
    Niezgoda, Marek
    AEQUATIONES MATHEMATICAE, 2017, 91 (01) : 1 - 20
  • [10] Inequalities for convex sequences and nondecreasing convex functions
    Marek Niezgoda
    Aequationes mathematicae, 2017, 91 : 1 - 20