Weak Factorization and Hankel Forms for Bergman–Orlicz Spaces on the Unit Ball

被引:0
|
作者
Edgar Tchoundja
Ruhan Zhao
机构
[1] University of Yaoundé I,Department of Mathematics, Faculty of Science
[2] SUNY Brockport,Department of Mathematics
[3] Shantou University,Department of Mathematics
来源
关键词
Hankel operator; Bergman–Orlicz spaces; Weak factorization; 47B35; 32A35; 32A36;
D O I
暂无
中图分类号
学科分类号
摘要
Let Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {B}}^n$$\end{document} be the unit ball of Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^n$$\end{document} and AαΦ(Bn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}^\Phi _\alpha ({\mathbb {B}}^n)$$\end{document} be the Bergman–Orlicz space, consisting of holomorphic functions in LαΦ(Bn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\Phi _\alpha ({\mathbb {B}}^n)$$\end{document}. We characterize bounded Hankel operators between some Bergman–Orlicz spaces AαΦ1(Bn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}^{\Phi _1}_\alpha ({\mathbb {B}}^n)$$\end{document} and AαΦ2(Bn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal A^{\Phi _2}_\alpha ({\mathbb {B}}^n)$$\end{document} where Φ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _1$$\end{document} and Φ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _2$$\end{document} are convex growth functions. We then obtain weak factorization theorems for AαΦ(Bn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}^\Phi _\alpha ({\mathbb {B}}^n)$$\end{document}, with Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document} a convex growth function, into two Bergman–Orlicz spaces, generalizing the main result obtained in Pau and Zhao (Math Ann 363:363–383, 2015).
引用
收藏
相关论文
共 50 条