Numerical simulations of the coastal effects of tsunami waves caused by the 1993 Hokkaido-Nansei-Oki earthquake

被引:0
|
作者
Wenliang Pan
Sheng’an Wang
Shuqun Cai
机构
[1] Chinese Academy of Sciences,Laboratory of Tropical Environmental Dynamics (LED), South China Sea Institute of Oceanology
[2] Chinese Academy of Sciences,Marine Observation and Research Laboratory (MORL), South China Sea Institute of Oceanology
[3] Graduate University of Chinese Academy of Sciences,undefined
关键词
tsunami; coastal effects; runup; inundation; numerical modeling;
D O I
暂无
中图分类号
学科分类号
摘要
Generally, tsunami waves become hazardous only when approaching the coast. Studying the runup and inundation of tsunami waves is important for understanding the tsunami evolution and for tsunami hazard assessment. Here, we simulated the 1993 Hokkaido-Nansei-Oki (HNO) tsunami using a finite-difference model based on nonlinear shallow-water equations. We focused on the runup and inundation of tsunami wave propagation onto coastal area of Okushiri Island near Hokkaido, Japan, and investigate the relationship of different runup heights with the morphology and bathymetry of the seashore. In the simulation, a nested 4-layer grid system and moving boundary technique are adopted to study runup and inundation. The calculated tsunami heights and inundations in the region agreed well with field measurements. The local bathymetric and topographic characteristics had a first-order effect on the runup. Numerical experiments show that the focusing of certain local bathymetric features would amplify both wave height and current velocity remarkably. The results show that computation on dense grids is necessary to reproduce the observed runup heights, and inundation velocity is an important factor preventing tsunami devastation. In addition, we discussed the potential capability of sediment transport to illustrate the impact of tsunami waves on coastal geomorphology.
引用
收藏
页码:1029 / 1039
页数:10
相关论文
共 31 条