Combined roles of exporters in acetic acid tolerance in Saccharomyces cerevisiae

被引:0
|
作者
Xiaohuan Zhang
Jeroen G. Nijland
Arnold J. M. Driessen
机构
[1] University of Groningen,Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology
关键词
Acetic acid; Acetate efflux; Aqr1; Tpo2; Tpo3;
D O I
暂无
中图分类号
学科分类号
摘要
Acetic acid is a growth inhibitor generated during alcoholic fermentation and pretreatment of lignocellulosic biomass, a major feedstock to produce bioethanol. An understanding of the acetic acid tolerance mechanisms is pivotal for the industrial production of bioethanol. One of the mechanisms for acetic acid tolerance is transporter-mediated secretion where individual transporters have been implicated. Here, we deleted the transporters Aqr1, Tpo2, and Tpo3, in various combinations, to investigate their combined role in acetic acid tolerance. Single transporter deletions did not impact the tolerance at mild acetic acid stress (20 mM), but at severe stress (50 mM) growth was decreased or impaired. Tpo2 plays a crucial role in acetic acid tolerance, while the AQR1 deletion has a least effect on growth and acetate efflux. Deletion of both Tpo2 and Tpo3 enhanced the severe growth defects at 20 mM acetic acid concomitantly with a reduced rate of acetate secretion, while TPO2 and/or TPO3 overexpression in ∆tpo2∆tpo3∆ restored the tolerance. In the deletion strains, the acetate derived from sugar metabolism accumulated intracellularly, while gene transcription analysis suggests that under these conditions, ethanol metabolism is activated while acetic acid production is reduced. The data demonstrate that Tpo2 and Tpo3 together fulfill an important role in acetate efflux and the acetic acid response.
引用
收藏
相关论文
共 50 条
  • [1] Combined roles of exporters in acetic acid tolerance in Saccharomyces cerevisiae
    Zhang, Xiaohuan
    Nijland, Jeroen G.
    Driessen, Arnold J. M.
    BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS, 2022, 15 (01):
  • [2] Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae
    Peng Geng
    Liang Zhang
    Gui Yang Shi
    World Journal of Microbiology and Biotechnology, 2017, 33
  • [3] Genetic dissection of acetic acid tolerance in Saccharomyces cerevisiae
    Peng Geng
    Yin Xiao
    Yun Hu
    Haiye Sun
    Wei Xue
    Liang Zhang
    Gui-yang Shi
    World Journal of Microbiology and Biotechnology, 2016, 32
  • [4] Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae
    Geng, Peng
    Zhang, Liang
    Shi, Gui Yang
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2017, 33 (05):
  • [5] Genetic dissection of acetic acid tolerance in Saccharomyces cerevisiae
    Geng, Peng
    Xiao, Yin
    Hu, Yun
    Sun, Haiye
    Xue, Wei
    Zhang, Liang
    Shi, Gui-yang
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2016, 32 (09):
  • [6] Trehalose accumulation enhances tolerance of Saccharomyces cerevisiae to acetic acid
    Yoshiyama, Yoko
    Tanaka, Koichi
    Yoshiyama, Kohei
    Hibi, Makoto
    Ogawa, Jun
    Shima, Jun
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2015, 119 (02) : 172 - 175
  • [7] Improvement of Acetic Acid Tolerance in Saccharomyces cerevisiae by Novel Genome Shuffling
    A. Wawro
    Applied Biochemistry and Microbiology, 2021, 57 : 180 - 188
  • [8] Improvement of Acetic Acid Tolerance in Saccharomyces cerevisiae by Novel Genome Shuffling
    Wawro, A.
    APPLIED BIOCHEMISTRY AND MICROBIOLOGY, 2021, 57 (02) : 180 - 188
  • [9] Identification of acetic-acid tolerance of Saccharomyces cerevisiae strains by microsatellite markers
    肖银
    HU Yun
    张梁
    XUE Wei
    SHI Gui-yang
    JournalofChongqingUniversity(EnglishEdition), 2015, 14 (02) : 54 - 62
  • [10] The effect of acetic acid and specific growth rate on acetic acid tolerance and trehalose content of Saccharomyces cerevisiae.
    Arneborg, N
    Moos, MK
    Jakobsen, M
    BIOTECHNOLOGY LETTERS, 1995, 17 (12) : 1299 - 1304