Current progress and open challenges for applying deep learning across the biosciences

被引:0
|
作者
Nicolae Sapoval
Amirali Aghazadeh
Michael G. Nute
Dinler A. Antunes
Advait Balaji
Richard Baraniuk
C. J. Barberan
Ruth Dannenfelser
Chen Dun
Mohammadamin Edrisi
R. A. Leo Elworth
Bryce Kille
Anastasios Kyrillidis
Luay Nakhleh
Cameron R. Wolfe
Zhi Yan
Vicky Yao
Todd J. Treangen
机构
[1] Rice University,Department of Computer Science
[2] University of California Berkeley,Department of Electrical Engineering and Computer Sciences
[3] University of Houston,Department of Biology and Biochemistry
[4] Rice University,Department of Electrical and Computer Engineering
[5] Rice University,Department of Bioengineering
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Deep Learning (DL) has recently enabled unprecedented advances in one of the grand challenges in computational biology: the half-century-old problem of protein structure prediction. In this paper we discuss recent advances, limitations, and future perspectives of DL on five broad areas: protein structure prediction, protein function prediction, genome engineering, systems biology and data integration, and phylogenetic inference. We discuss each application area and cover the main bottlenecks of DL approaches, such as training data, problem scope, and the ability to leverage existing DL architectures in new contexts. To conclude, we provide a summary of the subject-specific and general challenges for DL across the biosciences.
引用
收藏
相关论文
共 50 条
  • [1] Current progress and open challenges for applying deep learning across the biosciences
    Sapoval, Nicolae
    Aghazadeh, Amirali
    Nute, Michael G.
    Antunes, Dinler A.
    Balaji, Advait
    Baraniuk, Richard
    Barberan, C. J.
    Dannenfelser, Ruth
    Dun, Chen
    Edrisi, Mohammadamin
    Elworth, R. A. Leo
    Kille, Bryce
    Kyrillidis, Anastasios
    Nakhleh, Luay
    Wolfe, Cameron R.
    Yan, Zhi
    Yao, Vicky
    Treangen, Todd J.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [2] Deep Learning in Environmental Toxicology: Current Progress and Open Challenges
    Tan, Haoyue
    Jin, Jinsha
    Fang, Chao
    Zhang, Ying
    Chang, Baodi
    Zhang, Xiaowei
    Yu, Hongxia
    Shi, Wei
    ACS ES&T WATER, 2023, 4 (03): : 805 - 819
  • [3] Current progress and open challenges for applying tyrosine kinase inhibitors in osteosarcoma
    Chenglong Chen
    Qianyu Shi
    Jiuhui Xu
    Tingting Ren
    Yi Huang
    Wei Guo
    Cell Death Discovery, 8
  • [4] Current progress and open challenges for applying tyrosine kinase inhibitors in osteosarcoma
    Chen, Chenglong
    Shi, Qianyu
    Xu, Jiuhui
    Ren, Tingting
    Huang, Yi
    Guo, Wei
    CELL DEATH DISCOVERY, 2022, 8 (01)
  • [5] Deep learning modelling techniques: current progress, applications, advantages, and challenges
    Ahmed, Shams Forruque
    Alam, Md. Sakib Bin
    Hassan, Maruf
    Rozbu, Mahtabin Rodela
    Ishtiak, Taoseef
    Rafa, Nazifa
    Mofijur, M.
    Ali, A. B. M. Shawkat
    Gandomi, Amir H.
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (11) : 13521 - 13617
  • [6] Deep learning modelling techniques: current progress, applications, advantages, and challenges
    Shams Forruque Ahmed
    Md. Sakib Bin Alam
    Maruf Hassan
    Mahtabin Rodela Rozbu
    Taoseef Ishtiak
    Nazifa Rafa
    M. Mofijur
    A. B. M. Shawkat Ali
    Amir H. Gandomi
    Artificial Intelligence Review, 2023, 56 : 13521 - 13617
  • [7] Interference Suppression Using Deep Learning: Current Approaches and Open Challenges
    Oyedare, Taiwo
    Shah, Vijay K.
    Jakubisin, Daniel J.
    Reed, Jeffrey H.
    IEEE ACCESS, 2022, 10 : 66238 - 66266
  • [8] Deep Learning in Optical Coherence Tomography Angiography: Current Progress, Challenges, and Future Directions
    Yang, Dawei
    Ran, An Ran
    Nguyen, Truong X. X.
    Lin, Timothy P. H.
    Chen, Hao
    Lai, Timothy Y. Y.
    Tham, Clement C. C.
    Cheung, Carol Y. Y.
    DIAGNOSTICS, 2023, 13 (02)
  • [9] Geometric deep learning: progress, applications and challenges
    Wenming Cao
    Canta Zheng
    Zhiyue Yan
    Weixin Xie
    Science China Information Sciences, 2022, 65
  • [10] Geometric deep learning: progress, applications and challenges
    Wenming CAO
    Canta ZHENG
    Zhiyue YAN
    Weixin XIE
    Science China(Information Sciences), 2022, 65 (02) : 238 - 240