Using Bayesian parameter estimation to learn more from data without black boxes

被引:0
|
作者
Rachel C. Kurchin
机构
[1] Carnegie Mellon University,
[2] Materials Science and Engineering Department,undefined
来源
Nature Reviews Physics | 2024年 / 6卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In an age of expensive experiments and hype around new data-driven methods, researchers understandably want to ensure they are gleaning as much insight from their data as possible. Rachel C. Kurchin argues that there is still plenty to be learned from older approaches without turning to black boxes.
引用
收藏
页码:152 / 154
页数:2
相关论文
共 50 条
  • [1] Using Bayesian parameter estimation to learn more from data without black boxes
    Kurchin, Rachel C.
    NATURE REVIEWS PHYSICS, 2024, 6 (03) : 160 - 161
  • [2] SHOULD BLACK-BOXES CONTAIN MORE DATA
    TENCH, W
    NEW SCIENTIST, 1985, 107 (1470) : 21 - 22
  • [3] Copula parameter estimation using Bayesian inference for pipe data analysis
    Atique, Farzana
    Attoh-Okine, Nii
    CANADIAN JOURNAL OF CIVIL ENGINEERING, 2018, 45 (01) : 61 - 70
  • [4] Parameter estimation for Bayesian classification of multispectral data
    Mohamed, RM
    Farag, AA
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 1, PROCEEDINGS, 2003, 2773 : 346 - 355
  • [5] ThetaMater: Bayesian estimation of population size parameter θ from genomic data
    Adams, Richard H.
    Schield, Drew R.
    Card, Daren C.
    Corbin, Andrew
    Castoe, Todd A.
    BIOINFORMATICS, 2018, 34 (06) : 1072 - 1073
  • [6] Bayesian Approach to Learn Bayesian Networks Using Data and Constraints
    Gao Xiao-guang
    Yang Yu
    Guo Zhi-gao
    Chen Da-qing
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 3667 - 3672
  • [7] Parameter Estimation of Reliability Growth Model with Incomplete Data Using Bayesian Method
    Park, Cheongeon
    Lim, Jisung
    Lee, Sangchul
    JOURNAL OF THE KOREAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, 2019, 47 (10) : 747 - 752
  • [9] Improved Placental Parameter Estimation Using Data-Driven Bayesian Modelling
    Flouri, Dimitra
    Owen, David
    Aughwane, Rosalind
    Mufti, Nada
    Sokolska, Magdalena
    Atkinson, David
    Kendall, Giles
    Bainbridge, Alan
    Vercauteren, Tom
    David, Anna L.
    Ourselin, Sebastien
    Melbourne, Andrew
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT III, 2019, 11766 : 609 - 616
  • [10] Exploring the Bayesian parameter estimation of binary black holes with LISA
    Marsat, Sylvain
    Baker, John G.
    Dal Canton, Tito
    PHYSICAL REVIEW D, 2021, 103 (08)