Maximal surface group representations in isometry groups of classical Hermitian symmetric spaces

被引:0
|
作者
Steven B. Bradlow
Oscar García-Prada
Peter B. Gothen
机构
[1] University of Illinois,Department of Mathematics
[2] CSIC,Departamento de Matemáticas
[3] Universidade do Porto,Departamento de Matemática Pura, Faculdade de Ciências
来源
Geometriae Dedicata | 2006年 / 122卷
关键词
Hermitian symmetric spaces; Higgs bundles; Primary 14H60; Secondary 57R57; Secondary 58D29;
D O I
暂无
中图分类号
学科分类号
摘要
Higgs bundles and non-abelian Hodge theory provide holomorphic methods with which to study the moduli spaces of surface group representations in a reductive Lie group G. In this paper we survey the case in which G is the isometry group of a classical Hermitian symmetric space of non-compact type. Using Morse theory on the moduli spaces of Higgs bundles, we compute the number of connected components of the moduli space of representations with maximal Toledo invariant
引用
收藏
相关论文
共 50 条