A Verifiable (k,n)-Threshold Quantum Secure Multiparty Summation Protocol

被引:0
|
作者
Fulin Li
Hang Hu
Shixin Zhu
Ping Li
机构
[1] HeFei University of Technology,School of Mathematics
[2] Intelligent Interconnected Systems Laboratory of Anhui Province,undefined
[3] Xinjiang Agricultural University,undefined
关键词
Quantum secure multiparty summation; -dimensional GHZ state; Shamir’s threshold scheme; Hash function; Security;
D O I
暂无
中图分类号
学科分类号
摘要
Quantum secure multiparty summation plays an important role in quantum cryptography. In the existing quantum secure multiparty summation protocols, the (n,n)-threshold protocol has been given extensive attention. To increase the applicability of quantum secure multiparty summation protocols, a new quantum secure multiparty summation protocol based on Shamir’s threshold scheme and d-dimensional GHZ state is proposed in this paper. In the proposed protocol, i) it has a (k,n)-threshold approach; ii) in the result output phase, it can not only detect the existence of deceptive behavior but also determine the specific cheaters; iii) compared with the (n,n)-threshold quantum secure multiparty summation protocols, it needs less computation cost when L satisfies L > 4, where L is the length of each participant’s secret. In addition, the security analysis shows that our protocol can resist intercept-resend attack, entangle-measure attack, Trojan horse attack, and participant attack.
引用
收藏
相关论文
共 50 条
  • [1] A Verifiable (k,n)-Threshold Quantum Secure Multiparty Summation Protocol
    Li, Fulin
    Hu, Hang
    Zhu, Shixin
    Li, Ping
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2023, 62 (02)
  • [2] Verifiable quantum protocol for dynamic secure multiparty summation based on homomorphic encryption
    Luo, Mei
    Li, Fulin
    Liu, Li
    Zhu, Shixin
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (11)
  • [3] A (k, n)-threshold dynamic quantum secure multiparty multiplication protocol
    Li, Fulin
    Hu, Hang
    Zhu, Shixin
    [J]. QUANTUM INFORMATION PROCESSING, 2022, 21 (12)
  • [4] A (k, n)-threshold dynamic quantum secure multiparty multiplication protocol
    Fulin Li
    Hang Hu
    Shixin Zhu
    [J]. Quantum Information Processing, 21
  • [5] A Generalized Quantum Protocol for Secure Multiparty Summation
    Sutradhar, Kartick
    Om, Hari
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2020, 67 (12) : 2978 - 2982
  • [6] Secure multiparty quantum summation
    Du Jian-Zhong
    Chen Xiu-Bo
    Wen Qiao-Yan
    Zhu Fu-Chen
    [J]. ACTA PHYSICA SINICA, 2007, 56 (11) : 6214 - 6219
  • [7] Secure multiparty quantum summation
    Du, Jian-Zhong
    Chen, Xiu-Bo
    Wen, Qiao-Yan
    Zhu, Fu-Chen
    [J]. Wuli Xuebao/Acta Physica Sinica, 2007, 56 (11): : 6214 - 6219
  • [8] Cryptanalysis of secure multiparty quantum summation
    Cai, Xiao-Qiu
    Wang, Tian-Yin
    Wei, Chun-Yan
    Gao, Fei
    [J]. QUANTUM INFORMATION PROCESSING, 2022, 21 (08)
  • [9] General quantum secure multiparty computation protocol for simultaneous summation and multiplication
    Li, Fulin
    Luo, Mei
    Zhu, Shixin
    Pang, Binbin
    [J]. PHYSICA SCRIPTA, 2024, 99 (01)
  • [10] Cryptanalysis of secure multiparty quantum summation
    Xiao-Qiu Cai
    Tian-Yin Wang
    Chun-Yan Wei
    Fei Gao
    [J]. Quantum Information Processing, 21