Burst error-correcting quantum stabilizer codes designed from idempotents

被引:0
|
作者
Kai Lin Ong
机构
[1] Heriot-Watt University Malaysia,School of Mathematical and Computer Sciences
来源
Quantum Information Processing | / 22卷
关键词
Quantum code; Stabilizer; Group algebra; Idempotents; Burst error; 81P73; 94B20; 94B65; 16U40;
D O I
暂无
中图分类号
学科分类号
摘要
Certain classical codes can be viewed isomorphically as ideals of group algebras, while studying their algebraic structures help extracting the code properties. Research has shown that this was remarkably efficient in the case when the code generators are idempotents. In quantum error correction, the theory of stabilizer formalism requires classical self-orthogonal additive codes over the finite field GF(4), which, via the lens of group algebras, are essentially F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_2$$\end{document}-submodules over GF(4). Therefore, this paper provides a classification on idempotents in commutative group algebra GF(4)G, followed by a criterion that allows idempotents to generate stabilizer subgroups. Later, the construction of quantum stabilizer codes is done in the case when G is a cyclic group Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_n$$\end{document}, for n=2m-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2^m-1$$\end{document} and n=2m+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2^m+1$$\end{document}. Quantum bounds on their burst error minimum distance are subsequently determined.
引用
收藏
相关论文
共 50 条
  • [2] Quantum Error-Correcting Codes
    Grassl, Markus
    IT-INFORMATION TECHNOLOGY, 2006, 48 (06): : 354 - 358
  • [3] PHASED BURST ERROR-CORRECTING ARRAY CODES
    GOODMAN, RM
    MCELIECE, RJ
    SAYANO, M
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (02) : 684 - 693
  • [4] Quantum error-correcting code for burst error
    Kawabata, S
    QUANTUM COMMUNICATION, COMPUTING, AND MEASUREMENT 3, 2001, : 231 - 234
  • [5] Systolic decoder for burst error-correcting codes
    Diab, M
    IEE PROCEEDINGS-COMMUNICATIONS, 1998, 145 (03): : 126 - 132
  • [6] A CLASS OF BURST ERROR-CORRECTING ARRAY CODES
    BLAUM, M
    FARRELL, PG
    VANTILBORG, HCA
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1986, 32 (06) : 836 - 839
  • [7] Entanglement increases the error-correcting ability of quantum error-correcting codes
    Lai, Ching-Yi
    Brun, Todd A.
    PHYSICAL REVIEW A, 2013, 88 (01):
  • [8] BURST ERROR-CORRECTING CODFS BASH) ON MODULAR CORRECTING CODES
    Yatskiv, Vasyl
    Tsavolyk, Taras
    Yatskiv, Nataliya
    2018 14TH INTERNATIONAL CONFERENCE ON ADVANCED TRENDS IN RADIOELECTRONICS, TELECOMMUNICATIONS AND COMPUTER ENGINEERING (TCSET), 2018, : 1110 - 1113
  • [9] Constructing quantum error-correcting codes for pm-state systems from classical error-correcting codes
    Matsumoto, R
    Uyematsu, T
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2000, E83A (10) : 1878 - 1883
  • [10] Quantum error-correcting codes and their geometries
    Ball, Simeon
    Centelles, Aina
    Huber, Felix
    ANNALES DE L INSTITUT HENRI POINCARE D, 2023, 10 (02): : 337 - 405