Global existence to a higher-dimensional quasilinear chemotaxis system with consumption of chemoattractant

被引:0
|
作者
Liangchen Wang
Chunlai Mu
Ke Lin
Jie Zhao
机构
[1] Chongqing University,College of Mathematics and Statistics
关键词
Chemotaxis; Global existence; A priori estimates; 92C17; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with an initial-boundary value problem for the chemotaxis system ut=∇·(D(u)∇u)-∇·(u∇v),x∈Ω,t>0,vt=Δv-uv,x∈Ω,t>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{\begin{array}{ll} u_t = \nabla \cdot (D (u) \nabla u)- \nabla \cdot (u \nabla v), \quad & x\in \Omega, \quad t > 0, \\ v_t= \Delta v-uv, \quad & x \in \Omega, \quad t > 0, \end{array}\right.$$\end{document} under homogeneous Neumann boundary conditions in a convex smooth bounded domain Ω⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega\subset \mathbb{R}^n}$$\end{document} with n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n\geq3}$$\end{document}, where the diffusion function D(u) satisfying D(u)≥cDum-1for allu>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{array}{ll}D(u)\geq c_Du^{m-1}\quad\text{for all}\,\,u > 0 \end{array}$$\end{document}with some cD > 0 and m > 1. The main goal of this paper was to extend a previous result on global existence of solutions by Wang et al. (Z Angew Math Phys 65:1137–1152, 2014) under the condition that m>2-2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${m > 2-\frac{2}{n}}$$\end{document} can be relaxed to m>2-6n+4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${m > 2-\frac{6}{n+4}}$$\end{document}.
引用
收藏
页码:1633 / 1648
页数:15
相关论文
共 50 条
  • [1] Global existence to a higher-dimensional quasilinear chemotaxis system with consumption of chemoattractant
    Wang, Liangchen
    Mu, Chunlai
    Lin, Ke
    Zhao, Jie
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04): : 1633 - 1648
  • [2] A NOTE ON GLOBAL EXISTENCE TO A HIGHER-DIMENSIONAL QUASILINEAR CHEMOTAXIS SYSTEM WITH CONSUMPTION OF CHEMOATTRACTANT
    Zheng, Jiashan
    Wang, Yifu
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (02): : 669 - 686
  • [3] Global existence and boundedness in a higher-dimensional quasilinear chemotaxis system
    Yilong Wang
    Zhaoyin Xiang
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 3159 - 3179
  • [4] Global existence and boundedness in a higher-dimensional quasilinear chemotaxis system
    Wang, Yilong
    Xiang, Zhaoyin
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (06): : 3159 - 3179
  • [5] Global boundedness and large time behaviour in a higher-dimensional quasilinear chemotaxis system with consumption of chemoattractant
    Zhang, Minghua
    Mu, Chunlai
    Yang, Hongying
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024,
  • [6] Global existence and asymptotic behavior to a chemotaxis system with consumption of chemoattractant in higher dimensions
    Fan, Lili
    Jin, Hai-Yang
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (01)
  • [7] BOUNDEDNESS OF THE HIGHER-DIMENSIONAL QUASILINEAR CHEMOTAXIS SYSTEM WITH GENERALIZED LOGISTIC SOURCE
    唐清泉
    辛巧
    穆春来
    ActaMathematicaScientia, 2020, 40 (03) : 713 - 722
  • [8] Boundedness of the Higher-Dimensional Quasilinear Chemotaxis System with Generalized Logistic Source
    Tang, Qingquan
    Xin, Qiao
    Mu, Chunlai
    ACTA MATHEMATICA SCIENTIA, 2020, 40 (03) : 713 - 722
  • [9] Boundedness of the Higher-Dimensional Quasilinear Chemotaxis System with Generalized Logistic Source
    Qingquan Tang
    Qiao Xin
    Chunlai Mu
    Acta Mathematica Scientia, 2020, 40 : 713 - 722
  • [10] Global boundedness of a higher-dimensional chemotaxis system on alopecia areata
    Zhang, Wenjie
    Xu, Lu
    Xin, Qiao
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (05) : 7922 - 7942