Encoding Two-Dimensional Range Top-k Queries

被引:0
|
作者
Seungbum Jo
Rahul Lingala
Srinivasa Rao Satti
机构
[1] Chungnam National University,
[2] IIT Bombay,undefined
[3] Norwegian University of Science and Technology,undefined
来源
Algorithmica | 2021年 / 83卷
关键词
Encoding model; Top-; query; Range minimum query;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of encoding two-dimensional arrays, whose elements come from a total order, for answering Top-k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Top-}}{k}$$\end{document} queries. The aim is to obtain encodings that use space close to the information-theoretic lower bound, which can be constructed efficiently. For an m×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \times n$$\end{document} array, with m≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \le n$$\end{document}, we first propose an encoding for answering 1-sided Top-k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsf {Top}}{\text {-}}k{}$$\end{document} queries, whose query range is restricted to [1⋯m][1⋯a]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[1 \dots m][1 \dots a]$$\end{document}, for 1≤a≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le a \le n$$\end{document}. Next, we propose an encoding for answering for the general (4-sided) Top-k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsf {Top}}{\text {-}}k{}$$\end{document} queries that takes (mlg(k+1)nn+2nm(m-1)+o(n))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m\lg {{(k+1)n \atopwithdelims ()n}}+2nm(m-1)+o(n))$$\end{document} bits, which generalizes the joint Cartesian tree of Golin et al. [TCS 2016]. Compared with trivial O(nmlgn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(nm\lg {n})$$\end{document}-bit encoding, our encoding takes less space when m=o(lgn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m = o(\lg {n})$$\end{document}. In addition to the upper bound results for the encodings, we also give lower bounds on encodings for answering 1 and 4-sided Top-k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsf {Top}}{\text {-}}k{}$$\end{document} queries, which show that our upper bound results are almost optimal.
引用
收藏
页码:3379 / 3402
页数:23
相关论文
共 50 条
  • [1] Encoding Two-Dimensional Range Top-k Queries
    Jo, Seungbum
    Lingala, Rahul
    Satti, Srinivasa Rao
    [J]. ALGORITHMICA, 2021, 83 (11) : 3379 - 3402
  • [2] Encodings for Range Selection and Top-k Queries
    Grossi, Roberto
    Iacono, John
    Navarro, Gonzalo
    Raman, Rajeev
    Rao, Satti Srinivasa
    [J]. ALGORITHMS - ESA 2013, 2013, 8125 : 553 - 564
  • [3] Efficient Indexes for Diverse Top-k Range Queries
    Agarwal, Pankaj K.
    Sintos, Stavros
    Steiger, Alex
    [J]. PODS'20: PROCEEDINGS OF THE 39TH ACM SIGMOD-SIGACT-SIGAI SYMPOSIUM ON PRINCIPLES OF DATABASE SYSTEMS, 2020, : 213 - 227
  • [4] Colored top-K range-aggregate queries
    Sanyal, Biswajit
    Gupta, Prosenjit
    Majumder, Subhashis
    [J]. INFORMATION PROCESSING LETTERS, 2013, 113 (19-21) : 777 - 784
  • [5] Multi-dimensional top-k dominating queries
    Yiu, Man Lung
    Mamoulis, Nikos
    [J]. VLDB JOURNAL, 2009, 18 (03): : 695 - 718
  • [6] Multi-dimensional top-k dominating queries
    Man Lung Yiu
    Nikos Mamoulis
    [J]. The VLDB Journal, 2009, 18 : 695 - 718
  • [7] Processing range top-k queries in a sparse data cube
    Hong, S
    Moon, B
    Lee, S
    [J]. IKE '04: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE ENGNINEERING, 2004, : 282 - 287
  • [8] Top-k Dominance Range-Based Uncertain Queries
    Ha Thanh Huynh Nguyen
    Cao, Jinli
    [J]. DATABASES THEORY AND APPLICATIONS, (ADC 2016), 2016, 9877 : 191 - 203
  • [9] Reverse Top-k Queries
    Vlachou, Akrivi
    Doulkeridis, Christos
    Kotidis, Yannis
    Norvag, Kjetil
    [J]. 26TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING ICDE 2010, 2010, : 365 - 376
  • [10] K2-Treaps: Range Top-k Queries in Compact Space
    Brisaboa, Nieves R.
    de Bernardo, Guillermo
    Konow, Roberto
    Navarro, Gonzalo
    [J]. STRING PROCESSING AND INFORMATION RETRIEVAL, SPIRE 2014, 2014, 8799 : 215 - 226