Quantum mechanics from stochastic processes

被引:0
|
作者
Folkert Kuipers
机构
[1] Complesso Universitario di Monte S. Angelo,INFN, Sezione di Napoli
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We construct an explicit one-to-one correspondence between non-relativistic stochastic processes and solutions of the Schrödinger equation and between relativistic stochastic processes and solutions of the Klein–Gordon equation. The existence of this equivalence suggests that the Lorentzian path integral can be defined as an Itô integral, similar to the definition of the Euclidean path integral in terms of the Wiener integral. Moreover, the result implies a stochastic interpretation of quantum theories.
引用
收藏
相关论文
共 50 条
  • [1] Quantum mechanics from stochastic processes
    Kuipers, Folkert
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (06):
  • [2] Foundations of quantum mechanics: Connection with stochastic processes
    Olavo, LSF
    [J]. PHYSICAL REVIEW A, 2000, 61 (05): : 14
  • [3] STOCHASTIC-PROCESSES AND QUANTUM-MECHANICS
    JONALASINIO, G
    [J]. ASTERISQUE, 1985, (132) : 203 - 216
  • [4] Foundations of quantum mechanics: Connection with stochastic processes
    Olavo, L.S.F.
    [J]. Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 61 (05): : 521091 - 521091
  • [5] Comment on "Foundations of quantum mechanics: Connection with stochastic processes"
    Alonso, D
    Muga, JG
    Mayato, RS
    [J]. PHYSICAL REVIEW A, 2001, 64 (01): : 3 - 16101
  • [6] DIFFERENT RANDOM PROCESSES OF STOCHASTIC QUANTUM-MECHANICS
    CLAVERIE, P
    DINER, S
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE B, 1975, 280 (01): : 1 - 4
  • [7] EUCLIDEAN QUANTUM-MECHANICS AND STOCHASTIC-PROCESSES
    GRAHAM, R
    [J]. HELVETICA PHYSICA ACTA, 1986, 59 (02): : 241 - 262
  • [8] STOCHASTIC-PROCESSES FOR INDIRECTLY INTERACTING PARTICLES AND STOCHASTIC QUANTUM-MECHANICS
    BUONOMANO, V
    DEANDRADE, AFP
    [J]. FOUNDATIONS OF PHYSICS, 1988, 18 (04) : 401 - 426
  • [9] Multi-Well Potentials in Quantum Mechanics and Stochastic Processes
    Berezovoj, Victor P.
    Ivashkevych, Glib I.
    Konchatnij, Mikhail I.
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2010, 6
  • [10] QUANTUM STOCHASTIC CALCULUS, OPERATION VALUED STOCHASTIC-PROCESSES, AND CONTINUAL MEASUREMENTS IN QUANTUM-MECHANICS
    BARCHIELLI, A
    LUPIERI, G
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (09) : 2222 - 2230