Extrapolation techniques for ill-conditioned linear systems

被引:0
|
作者
C. Brezinski
M. Redivo–Zaglia
G. Rodriguez
S. Seatzu
机构
[1] Laboratoire d'Analyse Numérique et d'Optimisation,
[2] Université des Sciences et Technologies de Lille,undefined
[3] 59655 Villeneuve d'Ascq cedex,undefined
[4] France ,undefined
[5] Dipartimento di Elettronica e Informatica,undefined
[6] Università degli Studi di Padova,undefined
[7] via Gradenigo 6/a,undefined
[8] 35131 Padova,undefined
[9] Italy ,undefined
[10] Dipartimento di Matematica,undefined
[11] Università degli Studi di Cagliari,undefined
[12] Viale Merello 92,undefined
[13] 09123,undefined
[14] Cagliari,undefined
[15] Italy (e-mail: rodriguez@unica.it,undefined
[16] seatzu@unica.it) ,undefined
来源
Numerische Mathematik | 1998年 / 81卷
关键词
Mathematics Subject Classification (1991):65B05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the regularized solutions of an ill–conditioned system of linear equations are computed for several values of the regularization parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\lambda$\end{document}. Then, these solutions are extrapolated at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\lambda=0$\end{document} by various vector rational extrapolations techniques built for that purpose. These techniques are justified by an analysis of the regularized solutions based on the singular value decomposition and the generalized singular value decomposition. Numerical results illustrate the effectiveness of the procedures.
引用
收藏
页码:1 / 29
页数:28
相关论文
共 50 条
  • [1] Extrapolation techniques for ill-conditioned linear systems
    Brezinski, C
    Redivo-Zaglia, M
    Rodriguez, G
    Seatzu, S
    [J]. NUMERISCHE MATHEMATIK, 1998, 81 (01) : 1 - 29
  • [2] Multi-parameter regularization techniques for ill-conditioned linear systems
    Brezinski, C
    Redivo-Zaglia, M
    Rodriguez, G
    Seatzu, S
    [J]. NUMERISCHE MATHEMATIK, 2003, 94 (02) : 203 - 228
  • [3] Multi-parameter regularization techniques for ill-conditioned linear systems
    C. Brezinski
    M. Redivo-Zaglia
    G. Rodriguez
    S. Seatzu
    [J]. Numerische Mathematik, 2003, 94 : 203 - 228
  • [4] A new technique for ill-conditioned linear systems
    Rodriguez, G
    Seatzu, S
    Theis, D
    [J]. NUMERICAL ALGORITHMS, 2003, 33 (1-4) : 433 - 442
  • [5] Iterative Refinement for Ill-Conditioned Linear Systems
    Oishi, Shin'ichi
    Ogita, Takeshi
    Rump, Siegfried M.
    [J]. JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2009, 26 (2-3) : 465 - 476
  • [6] SOLVING ILL-CONDITIONED SYSTEMS OF LINEAR EQUATIONS
    JOSHI, VN
    TEWARSON, RP
    [J]. TRANSACTIONS OF THE NEW YORK ACADEMY OF SCIENCES, 1972, 34 (07): : 565 - &
  • [7] A New Technique for Ill-Conditioned Linear Systems
    G. Rodriguez
    S. Seatzu
    D. Theis
    [J]. Numerical Algorithms, 2003, 33 : 433 - 442
  • [8] DYNAMIC PROGRAMMING AND ILL-CONDITIONED LINEAR SYSTEMS
    BELLMAN, R
    KALABA, R
    LOCKETT, J
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1965, 10 (01) : 206 - &
  • [9] Iterative refinement for ill-conditioned linear systems
    Shin’ichi Oishi
    Takeshi Ogita
    Siegfried M. Rump
    [J]. Japan Journal of Industrial and Applied Mathematics, 2009, 26 : 465 - 476
  • [10] ON THE SENSITIVITY OF SINGULAR AND ILL-CONDITIONED LINEAR SYSTEMS
    Zeng, Zhonggang
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2019, 40 (03) : 918 - 942