We consider the elliptic equation -Δu+u=0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-\Delta u +u =0$$\end{document} with nonlinear boundary condition ∂u∂n=λu+g(λ,x,u),\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\frac{\partial u}{\partial n}= \lambda u + g(\lambda ,x,u), $$\end{document} where g(λ,x,s)s→0,as|s|→∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\frac{g(\lambda ,x,s)}{s} \rightarrow 0, \hbox { as }|s|\rightarrow \infty $$\end{document} and g is oscillatory. We provide sufficient conditions on g for the existence of unbounded sequences of stable solutions, unstable solutions, and turning points, even in the absence of resonant solutions.