Infinitely Many Stability Switches in a Problem with Sublinear Oscillatory Boundary Conditions

被引:0
|
作者
Alfonso Castro
Rosa Pardo
机构
[1] Harvey Mudd College,Department of Mathematics
[2] Universidad Complutense de Madrid,Departamento de Matemática Aplicada
关键词
Resonance; Stability; Instability; Multiplicity; Bifurcation from infinity; Sublinear oscillating boundary conditions; Turning points; 35B32; 35B34; 35B35; 58J55; 35J25; 35J60; 35J65;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the elliptic equation -Δu+u=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta u +u =0$$\end{document} with nonlinear boundary condition ∂u∂n=λu+g(λ,x,u),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\partial u}{\partial n}= \lambda u + g(\lambda ,x,u), $$\end{document} where g(λ,x,s)s→0,as|s|→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{g(\lambda ,x,s)}{s} \rightarrow 0, \hbox { as }|s|\rightarrow \infty $$\end{document} and g is oscillatory. We provide sufficient conditions on g for the existence of unbounded sequences of stable solutions, unstable solutions, and turning points, even in the absence of resonant solutions.
引用
收藏
页码:485 / 499
页数:14
相关论文
共 50 条