Sharp upper bound on the Sombor index of bipartite graphs with a given diameter

被引:0
|
作者
Zhen Wang
Fang Gao
Duoduo Zhao
Hechao Liu
机构
[1] Chizhou University,School of Big Data and Artificial Intelligence
[2] Hubei Normal University,School of Mathematics and Statistics
[3] South China Normal University,School of Mathematical Sciences
关键词
Sombor index; Bipartite graph; Diameter; 05C05; 05C09; 05C92;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a connected graph. The Sombor index of a graph G is defined as SO(G)=∑uv∈E(G)dG2(u)+dG2(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SO(G)=\sum _{uv\in E(G)}\sqrt{d^2_{G}(u)+d^2_{G}(v)}$$\end{document}, where dG(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_G(u)$$\end{document} denotes the degree of u in G. Let Bnd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {B}}^d_n$$\end{document} be the set of all bipartite graphs of diameter d with n vertices. In this paper, we determine the sharp upper bound on the Sombor index of G∈Bnd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\in {\mathscr {B}}^d_n$$\end{document}. In addition, we propose an algorithm for searching the largest Sombor index among Bnd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {B}}^d_n$$\end{document}. Furthermore, the relationship between the maximal Sombor index of G∈Bnd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\in {\mathscr {B}}^d_n$$\end{document} and the diameter d is established. Finally, we obtain the largest, the second-largest, the third-largest and the smallest Sombor indices of bipartite graphs.
引用
收藏
页码:27 / 46
页数:19
相关论文
共 50 条
  • [1] Sharp upper bound on the Sombor index of bipartite graphs with a given diameter
    Wang, Zhen
    Gao, Fang
    Zhao, Duoduo
    Liu, Hechao
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (01) : 27 - 46
  • [2] Sharp upper bounds for the F-index of bipartite graphs with a given diameter
    Li, Shuli
    Ge, Jun
    [J]. ARS COMBINATORIA, 2019, 146 : 143 - 155
  • [3] Sharp upper bounds for Zagreb indices of bipartite graphs with a given diameter
    Faculty of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China
    不详
    [J]. Appl Math Lett, 2 (131-137):
  • [4] Sharp upper bounds for Zagreb indices of bipartite graphs with a given diameter
    Li, Shuchao
    Zhang, Minjie
    [J]. APPLIED MATHEMATICS LETTERS, 2011, 24 (02) : 131 - 137
  • [5] Modified Sombor index of unicyclic graphs with a given diameter
    Shooshtari, H.
    Sheikholeslami, S. M.
    Amjadi, J.
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (06)
  • [6] Sharp upper bounds for multiplicative Zagreb indices of bipartite graphs with given diameter
    Wang, Chunxiang
    Liu, Jia-Bao
    Wang, Shaohui
    [J]. DISCRETE APPLIED MATHEMATICS, 2017, 227 : 156 - 165
  • [7] Sharp lower bound of the least eigenvalue of graphs with given diameter
    Liu, Rui-Fang
    Zhai, Ming-Qing
    Shu, Jin-Long
    [J]. Journal of Donghua University (English Edition), 2009, 26 (04) : 435 - 437
  • [8] Sharp Lower Bound of the Least Eigenvalue of Graphs with Given Diameter
    刘瑞芳
    翟明清
    束金龙
    [J]. Journal of Donghua University(English Edition), 2009, 26 (04) : 435 - 437
  • [9] On the extremal Sombor index of trees with a given diameter
    Li, Shuchao
    Wang, Zheng
    Zhang, Minjie
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2022, 416
  • [10] Extremal Graphs for Sombor Index with Given Parameters
    Zhang, Wanping
    Meng, Jixiang
    Wang, Na
    [J]. AXIOMS, 2023, 12 (02)