Achieving parametric uniformity for knowledge bases in a relational probabilistic conditional logic with maximum entropy semantics

被引:0
|
作者
Christoph Beierle
Annika Krämer
机构
[1] FernUniversität in Hagen,Department of Computer Science
关键词
Knowledge representation; Knowledge base; Probabilistic logic; Conditional logic; Relational Logic; Maximum entropy; Parametric uniformity; 68T27; 68T30; 68T37;
D O I
暂无
中图分类号
学科分类号
摘要
When extending probabilistic logic to a relational setting, it is desirable to still be able to use efficient computation mechanisms developed for the propositional case. In this paper, we investigate the relational probabilistic conditional logic FO-PCL whose semantics employs the principle of maximum entropy. While in general, this semantics is defined via the ground instances of the rules in an FO-PCL knowledge base \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal R}$\end{document}, the maximum entropy model can be computed on the level of rules rather than on the level of instances of the rules if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal R}$\end{document} is parametrically uniform. We elaborate in detail the reasons that cause \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal R}$\end{document} to be not parametrically uniform. Based on this investigation, we derive a new syntactic criterion for parametric uniformity and develop an algorithm that transforms any FO-PCL knowledge base \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal R}$\end{document} into an equivalent knowledge base \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal R}^{\prime}$\end{document} that is parametrically uniform. This provides a basis for a simplified maximum entropy model computation since for this computation, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal R}^{\prime}$\end{document} can be used instead of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal R}$\end{document}.
引用
收藏
页码:5 / 45
页数:40
相关论文
共 27 条