Segal–Bargmann and Weyl transforms on compact Lie groups

被引:0
|
作者
Joachim Hilgert
Genkai Zhang
机构
[1] Universität Paderborn,Institut für Mathematik
[2] Chalmers University of Technology and Göteborg University,Department of Mathematics
来源
关键词
Segal–Bargmann transform; Weyl transform; Compact Lie group; Hermite functions; Reproducing kernel; Toeplitz operator; 22E45; 32A25; 44A15;
D O I
暂无
中图分类号
学科分类号
摘要
We present an elementary derivation of the reproducing kernel for invariant Fock spaces associated with compact Lie groups which, as Ólafsson and Ørsted showed in (Lie Theory and its Applicaitons in Physics. World Scientific, 1996), yields a simple proof of the unitarity of Hall’s Segal–Bargmann transform for compact Lie groups K. Further, we prove certain Hermite and character expansions for the heat and reproducing kernels on K and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K_{\mathbb C}}$$\end{document} . Finally, we introduce a Toeplitz (or Wick) calculus as an attempt to have a quantization of the functions on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K_{\mathbb C}}$$\end{document} as operators on the Hilbert space L2(K).
引用
收藏
页码:285 / 305
页数:20
相关论文
共 50 条