Bounded tightness for weak topologies

被引:0
|
作者
B. Cascales
M. Raja
机构
[1] Universidad de Murcia,Departamento de Matemáticas, Facultad de Matemáticas
来源
Archiv der Mathematik | 2004年 / 82卷
关键词
Primary 46B99, 46A03;; Secondary 54F65.;
D O I
暂无
中图分类号
学科分类号
摘要
In every Hausdorff locally convex space for which there exists a strictly finer topology than its weak topology but with the same bounded sets (like for instance, all infinite dimensional Banach spaces, the space of distributions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ {\frak D}'(\Omega) $ \end{document} or the space of analytic functions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ A(\Omega) $ \end{document} in an open set , etc.) there is a set A such that 0 is in the weak closure of A but 0 is not in the weak closure of any bounded subset B of A. A consequence of this is that a Banach space X is finite dimensional if, and only if, the following property [P] holds: for each set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ A \subset X $ \end{document} and each x in the weak closure of A there is a bounded set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ B \subset A $ \end{document} such that x belongs to the weak closure of B. More generally, a complete locally convex space X satisfies property [P] if, and only if, either X is finite dimensional or linearly topologically isomorphic to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \mathbb{R}^\mathbb{N} $ \end{document}.
引用
收藏
页码:324 / 334
页数:10
相关论文
共 50 条