The iodine-sulfur (IS) thermochemical cycle process is one method for producing renewable hydrogen fuel using water as a feedstock. To determine the research growth of the IS process, a bibliometric study was conducted using the Web of Science (WOS) database. The aspects of co-occurrence counting, co-authorship analysis (citation and publication), and organization bibliographic coupling were investigated using a well-established bibliometric analysis methodology. The WOS database was used to extract 386 IS article records published between 1980 and 2023 for bibliometric analysis. Significant publication growth has been observed, with China accounting for 41% of all publications. According to research trend analysis, the top ten IS research focuses on the Bunsen reaction mechanism, sulfuric acid decomposition, and catalyst research and application. Based on the analysis, only a limited amount of research has been done on dynamic IS modelling, IS plant simulation, and the design of the process control system for the IS process on an industrial scale. Future research prospects were suggested to encourage ongoing research on the plantwide control (PWC) strategy structure, which consists of advanced dynamic modelling, simulation and control strategies. This would aid in documenting the difficulties encountered in the IS thermochemical plant, thereby accelerating its commercialization.