Gold nanoparticle assemblies stabilized by bis(phthalocyaninato)lanthanide(III) complexes through van der Waals interactions

被引:0
|
作者
Yuki Noda
Shin-ichiro Noro
Tomoyuki Akutagawa
Takayoshi Nakamura
机构
[1] Hokkaido University,Graduate School of Environmental Science
[2] National Institute of Advanced Industrial Science and Technology (AIST),Research Institute for Electronic Science
[3] AIST Tsukuba Central 4 and 5,undefined
[4] Hokkaido University,undefined
[5] Institute of Multidisciplinary Research for Advanced Materials,undefined
[6] Tohoku University,undefined
[7] 2-Chome,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Gold nanoparticle assemblies possess diverse application potential, ranging from industrial nanotechnology to medical biotechnology. Because the structures and properties of assemblies are directly affected by the stabilization mechanism between the organic molecules serving as protecting ligands and the gold nanoparticle surface, it is crucial to find and investigate new stabilization mechanisms. Here, we report that π-conjugated phthalocyanine rings can serve as stabilizing ligands for gold nanoparticles. Bis(phthalocyaninato)lutetium(III) (LuPc2) or bis(phthalocyaninato)terbium(III) (TbPc2), even though complex, do not have specific binding units and stabilize gold nanoparticles through van der Waals interaction between parallel adsorbed phthalocyanine ligands and the gold nanoparticle surface. AC magnetic measurements and the electron-transport properties of the assemblies give direct evidence that the phthalocyanines are isolated from each other. Each nanoparticle shows weak electronic coupling despite the short internanoparticle distance (~1 nm), suggesting Efros–Shklovskii-type variable-range hopping and collective single-electron tunnelling behaviours.
引用
收藏
相关论文
共 50 条
  • [1] Gold nanoparticle assemblies stabilized by bis(phthalocyaninato)lanthanide(III) complexes through van der Waals interactions
    Noda, Yuki
    Noro, Shin-ichiro
    Akutagawa, Tomoyuki
    Nakamura, Takayoshi
    SCIENTIFIC REPORTS, 2014, 4
  • [2] Signatures of van der Waals and Electrostatic Forces in the Deposition of Nanoparticle Assemblies
    Homede, Ekhlas
    Zigelman, Anna
    Abezgauz, Ludmila
    Manor, Ofer
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (18): : 5226 - 5232
  • [3] VAN DER WAALS INTERACTIONS IN MOLECULAR COMPLEXES OF TETRACYANOETHYLENE
    MANTIONE, MJ
    THEORETICA CHIMICA ACTA, 1969, 15 (02): : 141 - &
  • [5] Synthesis, spectroscopic and electrochemical properties of substituted bis(phthalocyaninato)lanthanide(III) complexes
    Jiang, JZ
    Liu, RCW
    Mak, TCW
    Chan, TWD
    Ng, DKP
    POLYHEDRON, 1997, 16 (03) : 515 - 520
  • [6] Graphene fatigue through van der Waals interactions
    Cui, Teng
    Yip, Kevin
    Hassan, Aly
    Wang, Guorui
    Liu, Xingjian
    Sun, Yu
    Filleter, Tobin
    SCIENCE ADVANCES, 2020, 6 (42):
  • [7] Structure and mesomorphic behavior of alkoxy-substituted bis(phthalocyaninato)lanthanide(III) complexes
    Binnemans, K
    Sleven, J
    De Feyter, S
    De Schryver, FC
    Donnio, B
    Guillon, D
    CHEMISTRY OF MATERIALS, 2003, 15 (20) : 3930 - 3938
  • [8] Selective deposition of gold nanoparticles using Van der Waals interactions
    Viallet, B.
    Ressier, L.
    Grisolia, J.
    Peyrade, J. P.
    Podgajny, R.
    Amiens, C.
    van den Boogaart, M. A. F.
    Brugger, J.
    PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 4, NO 2, 2007, 4 (02): : 276 - +
  • [9] van der Waals Interactions Determine Selectivity in Catalysis by Metallic Gold
    Rodriguez-Reyes, Juan Carlos F.
    Siler, Cassandra G. F.
    Liu, Wei
    Tkatchenko, Alexandre
    Friend, Cynthia M.
    Madix, Robert J.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (38) : 13333 - 13340
  • [10] van der Waals Interactions in Molecular Assemblies from First-Principles Calculations
    Li, Yan
    Lu, Deyu
    Nguyen, Huy-Viet
    Galli, Giulia
    JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (04): : 1944 - 1952