Formulation and convergence of the finite volume method for conservation laws on spacetimes with boundary

被引:0
|
作者
Jan Giesselmann
Philippe G. LeFloch
机构
[1] TU Darmstadt,Fachbereich Mathematik
[2] Sorbonne Université,Laboratoire Jacques
来源
Numerische Mathematik | 2020年 / 144卷
关键词
Primary 35L65; Secondary 76L05; 76N;
D O I
暂无
中图分类号
学科分类号
摘要
We study nonlinear hyperbolic conservation laws posed on a differential (n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n+1)$$\end{document}-manifold with boundary referred to as a spacetime, and defined from a prescribed flux field of n-forms depending on a parameter (the unknown variable)—a class of equations proposed by LeFloch and Okutmustur (Far East J. Math. Sci. 31:49–83, 2008). Our main result is a proof of the convergence of the finite volume method for weak solutions satisfying suitable entropy inequalities. A main difference with previous work is that we allow for slices with a boundary and, in addition, introduce a new formulation of the finite volume method involving the notion of total flux functions. Under a natural global hyperbolicity condition on the flux field and the spacetime and by assuming that the spacetime admits a foliation by compact slices with boundary, we establish an existence and uniqueness theory for the initial and boundary value problem, and we prove a contraction property in a geometrically natural L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-type distance.
引用
收藏
页码:751 / 785
页数:34
相关论文
共 50 条