A computational investigation on the antioxidant potential of myricetin 3,4′-di-O-α-L-rhamnopyranoside

被引:0
|
作者
Rodrigo A. Mendes
Shawan K. C. Almeida
Iuri N. Soares
Cristina A. Barboza
Renato G. Freitas
Alex Brown
Gabriel L. C. de Souza
机构
[1] Universidade Federal de Mato Grosso,Departamento de Química
[2] Polish Academy of Sciences,Institute of Physics
[3] University of Alberta,Department of Chemistry
来源
关键词
Antioxidant activity; Myricetin 3,4; -di-; -; -; -rhamnopyranoside; Density functional theory (DFT); Myricetin; Bond dissociation energy (BDE); Ionization potential (IP);
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we present a computational study on the antioxidant potential of myricetin 3,4′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$^{\prime }$\end{document}-di-O-α-L-rhamnopyranoside (Compound M). A density functional theory (DFT) approach with the B3LYP and LC-ωPBE functionals and with both the 6-311G(d,p) and 6-311+G(d,p) basis sets was used. The focus of the investigation was on the structural and energetic parameters including both bond dissociation enthalpies (BDEs) and ionization potentials (IPs), which provide information on the potential antioxidant activity. The properties computed were compared with BDEs and IPs available in the literature for myricetin, a compound well known for presenting antioxidant activity (and the parent molecule of the compound of interest in the present work). Myricetin 3,4′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$^{\prime }$\end{document}-di-O-α-L-rhamnopyranoside presented the lowest BDE to be 79.13 kcal/mol (as determined using B3LYP/6-311G(d,p) in water) while myricetin has a quite similar value (within 3.4 kcal/mol). IPs computed in the gas phase [B3LYP/6-311G(d,p)] are 157.18 and 161.4 kcal/mol for myricetin 3,4′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$^{\prime }$\end{document}-di-O-α-L-rhamnopyranoside and myricetin, respectively. As the values of BDEs are considerably lower than the ones probed for IPs (in the gas phase or in any given solvent environment), the hydrogen atom transfer mechanism is preferred over the single electron transfer mechanism. The BDEs obtained suggest that myricetin 3,4′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$^{\prime }$\end{document}-di-O-α-L-rhamnopyranoside can present antioxidant potential as good as the parent molecule myricetin (a well-known antioxidant). Therefore, experimental tests on the antioxidant activity of Compound M are encouraged.
引用
收藏
相关论文
共 50 条
  • [1] A computational investigation on the antioxidant potential of myricetin 3,4′-di-O-α-L-rhamnopyranoside
    Mendes, Rodrigo A.
    Almeida, Shawan K. C.
    Soares, Iuri N.
    Barboza, Cristina A.
    Freitas, Renato G.
    Brown, Alex
    de Souza, Gabriel L. C.
    JOURNAL OF MOLECULAR MODELING, 2018, 24 (06)
  • [2] Evaluation of the antioxidant potential of myricetin 3-O-α-L-rhamnopyranoside and myricetin 4′-O-α-L-rhamnopyranoside through a computational study
    Rodrigo A. Mendes
    Shawan K. C. Almeida
    Iuri N. Soares
    Cristina A. Barboza
    Renato G. Freitas
    Alex Brown
    Gabriel L. C. de Souza
    Journal of Molecular Modeling, 2019, 25
  • [3] Evaluation of the antioxidant potential of myricetin 3-O--L-rhamnopyranoside and myricetin 4-O--L-rhamnopyranoside through a computational study
    Mendes, Rodrigo A.
    Almeida, Shawan K. C.
    Soares, Iuri N.
    Barboza, Cristina A.
    Freitas, Renato G.
    Brown, Alex
    de Souza, Gabriel L. C.
    JOURNAL OF MOLECULAR MODELING, 2019, 25 (04)
  • [4] Characterization and antinociceptive activity (in vivo) of kempferol-3,4'-di-O-α-L-rhamnopyranoside isolated from Dryopteris cycadina
    Ali, Mumtaz
    Khan, Sher Ali
    Rauf, Abdur
    Khan, Haroon
    Shah, Mohammad Raza
    Ahmad, Manzoor
    Mubarak, Mohammad S.
    Ben Hadda, Taibi
    MEDICINAL CHEMISTRY RESEARCH, 2015, 24 (08) : 3218 - 3229
  • [5] Characterization and antinociceptive activity (in vivo) of kempferol-3,4′-di-O-α-L-rhamnopyranoside isolated from Dryopteris cycadina
    Mumtaz Ali
    Sher Ali Khan
    Abdur Rauf
    Haroon Khan
    Mohammad Raza Shah
    Manzoor Ahmad
    Mohammad S. Mubarak
    Taibi Ben Hadda
    Medicinal Chemistry Research, 2015, 24 : 3218 - 3229
  • [6] Synthesis of di-O-glycosyl derivatives of methyl α-L-rhamnopyranoside
    Nifant'ev, N.E.
    Lipkind, G.M.
    Shashkov, A.S.
    Kochetkov, N.K.
    Carbohydrate Research, 1992, 223 : 109 - 128
  • [7] Kaempferol-3,4′-di-O-β-glucopyranoside-7-O-α-rhamnopyranoside as a new flavonoid from Iberis amara L.
    Kroll, U.
    Reif, K.
    Lederer, I.
    Foerster, G.
    Zapp, J.
    PHARMAZIE, 2009, 64 (02): : 142 - 144
  • [8] Genistein 4′-O-α-L-rhamnopyranoside from Pithecellobium dulce
    Saxena, VK
    Singal, M
    FITOTERAPIA, 1998, 69 (04) : 305 - 306
  • [9] Methyl 4-O-benzoyl-2,3-O-isopropylidene-α-L-rhamnopyranoside
    Jonsson, K. Hanna M.
    Eriksson, Lars
    Widmalm, Goran
    ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY, 2006, 62 : O447 - O449
  • [10] Methyl 4-O-benzoyl-2,3-O-isopropylidene-α-L-rhamnopyranoside
    Hanna, K.
    Jonsson, M.
    Eriksson, Lars
    Widmalm, Göran
    Acta Crystallogr Sect C Cryst Struct Commun, 8 (o447-o449):