Existence and uniqueness of entropy solution of a nonlinear elliptic equation in anisotropic Sobolev–Orlicz space

被引:0
|
作者
Omar Benslimane
Ahmed Aberqi
Jaouad Bennouna
机构
[1] Sidi Mohamed Ben Abdellah University,Laboratory LAMA, Department of Mathematics, Faculty of Sciences Dhar El Mahraz
[2] Sidi Mohamed Ben Abdellah University,Laboratory LAMA, National School of Applied Sciences Fez
关键词
Anisotropic elliptic equation; Entropy solution; Sobolev–Orlicz anisotropic spaces; Unbounded domain; MSC 35J47; MSC 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
Our objective in this paper is to study a certain class of anisotropic elliptic equations with the second term, which is a low-order term and non-polynomial growth; described by an N-uplet of N-function satisfying the Δ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{2}$$\end{document}-condition in the framework of anisotropic Orlicz spaces. We prove the existence and uniqueness of entropic solution for a source in the dual or in L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{1}$$\end{document}, without assuming any condition on the behaviour of the solutions when x tends towards infinity. Moreover, we are giving an example of an anisotropic elliptic equation that verifies all our demonstrated results.
引用
收藏
页码:1579 / 1608
页数:29
相关论文
共 50 条