Design-based distribution function estimation for stigmatized populations

被引:0
|
作者
Lucio Barabesi
Giancarlo Diana
Pier Francesco Perri
机构
[1] University of Siena,Department of Economics and Statistics
[2] University of Padova,Department of Statistical Sciences
[3] University of Calabria,Department of Economics, Statistics and Finance
来源
Metrika | 2013年 / 76卷
关键词
Sensitive questions; Horvitz–Thompson estimator; Proportion estimation; Optional randomized response;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we discuss in a general framework the design-based estimation of population parameters when sensitive data are collected by randomized response techniques. We show in close detail the procedure for estimating the distribution function of a sensitive quantitative variable and how to estimate simultaneously the population prevalence of individuals bearing a stigmatizing attribute and the distribution function for the members belonging to the hidden group. The randomized response devices by Greenberg et al. (J Am Stat Assoc 66:243–250, 1971), Franklin (Commun Stat Theory Methods 18:489–505, 1989), and Singh et al. (Aust NZ J Stat 40:291–297 1998) are here considered as data-gathering tools.
引用
收藏
页码:919 / 935
页数:16
相关论文
共 50 条
  • [1] Design-based distribution function estimation for stigmatized populations
    Barabesi, Lucio
    Diana, Giancarlo
    Perri, Pier Francesco
    METRIKA, 2013, 76 (07) : 919 - 935
  • [2] Design-based confidence limits for a distribution function
    Cordy, CB
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1997, 26 (04) : 1447 - 1464
  • [3] Design-Based Confidence Limits for a Distribution Function
    Cordy, C. B.
    Communications in Statistics. Part B: Simulation and Computation, 26 (04):
  • [4] Optimum design-based ratio estimators of the distribution function
    Munoz, J. F.
    Alvarez, E.
    Rueda, M.
    JOURNAL OF APPLIED STATISTICS, 2014, 41 (07) : 1395 - 1407
  • [5] Design-based estimators of the distribution function in ranked set sampling with an application
    Sevil, Yusuf Can
    Yildiz, Tugba Ozkal
    STATISTICS, 2022, 56 (04) : 891 - 918
  • [6] Design-based composite estimation rediscovered
    Ciginas, Andrius
    STAT, 2023, 12 (01):
  • [7] Design-based maps for continuous spatial populations
    Fattorini, L.
    Marcheselli, M.
    Pisani, C.
    Pratelli, L.
    BIOMETRIKA, 2018, 105 (02) : 419 - 429
  • [8] Harmonization of design-based mapping for spatial populations
    A. Marcelli
    L. Fattorini
    S. Franceschi
    Stochastic Environmental Research and Risk Assessment, 2022, 36 : 3171 - 3182
  • [9] Harmonization of design-based mapping for spatial populations
    Marcelli, A.
    Fattorini, L.
    Franceschi, S.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2022, 36 (10) : 3171 - 3182
  • [10] On comparing design-based estimation versus model-based prediction to assess the abundance of biological populations
    Aubry, Philippe
    Francesiaz, Charlotte
    ECOLOGICAL INDICATORS, 2022, 144