共 50 条
Canonical Artin stacks over log smooth schemes
被引:0
|作者:
Matthew Satriano
机构:
[1] University of Michigan,Department of Mathematics
来源:
关键词:
Log structure;
Chevalley–Shephard–Todd;
Toric stack;
Stacky fan;
14D23;
14M25;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We develop a theory of toric Artin stacks extending the theories of toric Deligne–Mumford stacks developed by Borisov–Chen–Smith, Fantechi–Mann–Nironi, and Iwanari. We also generalize the Chevalley–Shephard–Todd theorem to the case of diagonalizable group schemes. These are both applications of our main theorem which shows that a toroidal embedding \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$X$$\end{document} is canonically the good moduli space (in the sense of Alper) of a smooth log smooth Artin stack whose stacky structure is supported on the singular locus of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$X$$\end{document}.
引用
收藏
页码:779 / 804
页数:25
相关论文