Exact solutions to new classes of reaction-diffusion equations containing delay and arbitrary functions

被引:0
|
作者
A. D. Polyanin
机构
[1] Russian Academy of Sciences,Ishlinskii Institute for Problems in Mechanics
[2] National Research Nuclear University MEPhI,undefined
关键词
delay differential equations; nonlinear reaction-diffusion equations with delay; exact solutions; generalized separable solutions; functional separable solutions; functional constraints method; delay time; Helmholtz equation; Poisson equation;
D O I
暂无
中图分类号
学科分类号
摘要
The following one-dimensional nonlinear delay reaction-diffusion equations are considered: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u_t = [G(u)u_x ]_x + F(u,w)$\end{document}, where u=u(x,t), w=u(x,t−τ), and τ is the delay time. New classes of these equations are described that depend on one or two arbitrary functions of one argument and that have exact simple separable, generalized separable, and functional separable solutions. The functional constraints method is used to seek solutions. Exact solutions are also presented for the more complex three-dimensional delay reaction-diffusion equations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u_t = div[G(u)\nabla u] + F(u,w)$\end{document}. All of the derived solutions are new, contain free parameters, and can be used to solve certain problems and test approximate analytical and numerical methods for solving these or more complex nonlinear delay equations.
引用
收藏
页码:169 / 175
页数:6
相关论文
共 50 条