Record-breaking climate extremes in Africa under stabilized 1.5 °C and 2 °C global warming scenarios

被引:0
|
作者
Shingirai Nangombe
Tianjun Zhou
Wenxia Zhang
Bo Wu
Shuai Hu
Liwei Zou
Donghuan Li
机构
[1] Chinese Academy of Sciences,LASG, Institute of Atmospheric Physics
[2] University of Chinese Academy of Sciences,undefined
[3] Meteorological Services Department,undefined
来源
Nature Climate Change | 2018年 / 8卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Anthropogenic forcing is anticipated to increase the magnitude and frequency of extreme events1, the impacts of which will be particularly hard-felt in already vulnerable locations such as Africa2. However, projected changes in African climate extremes remain little explored, particularly in the context of the Paris Agreement targets3,4. Here, using Community Earth System Model low warming simulations5, we examine how heat and hydrological extremes may change in Africa under stabilized 1.5 °C and 2 °C scenarios, focusing on the projected changing likelihood of events that have comparable magnitudes to observed record-breaking seasons. In the Community Earth System Model, limiting end-of-century warming to 1.5 °C is suggested to robustly reduce the frequency of heat extremes compared to 2 °C. In particular, the probability of events similar to the December–February 1991/1992 southern African and 2009/2010 North African heat waves is estimated to be reduced by 25 ± 5% and 20 ± 4%, respectively, if warming is limited to 1.5 °C instead of 2 °C. For hydrometeorological extremes (that is, drought and heavy precipitation), by contrast, signal differences are indistinguishable from the variation between ensemble members. Thus, according to this model, continued efforts to limit warming to 1.5 °C offer considerable benefits in terms of minimizing heat extremes and their associated socio-economic impacts across Africa.
引用
收藏
页码:375 / 380
页数:5
相关论文
共 50 条
  • [1] Record-breaking climate extremes in Africa under stabilized 1.5 °C and 2 °C global warming scenarios
    Nangombe, Shingirai
    Zhou, Tianjun
    Zhang, Wenxia
    Wu, Bo
    Hu, Shuai
    Zou, Liwei
    Li, Donghuan
    [J]. NATURE CLIMATE CHANGE, 2018, 8 (05) : 375 - +
  • [2] Australian climate extremes at 1.5 °C and 2 °C of global warming
    King, Andrew D.
    Karoly, David J.
    Henley, Benjamin J.
    [J]. NATURE CLIMATE CHANGE, 2017, 7 (06) : 412 - +
  • [3] Australian climate extremes at 1.5 °c and 2 °c of global warming
    King A.D.
    Karoly D.J.
    Henley B.J.
    [J]. Nature Climate Change, 2017, 7 (6) : 412 - 416
  • [4] Changes in climate extremes over West and Central Africa at 1.5 °C and 2 °C global warming
    Diedhiou, Arona
    Bichet, Adeline
    Wartenburger, Richard
    Seneviratne, Sonia, I
    Rowell, David P.
    Sylla, Mouhamadou B.
    Diallo, Ismaila
    Todzo, Stella
    Toure, N'datchoh E.
    Camara, Moctar
    Ngatchah, Benjamin Ngounou
    Kane, Ndjido A.
    Tall, Laure
    Affholder, Francois
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2018, 13 (06):
  • [5] Water balance components and climate extremes over Brazil under 1.5 °C and 2.0 °C of global warming scenarios
    da Silva Tavares, Priscila
    Acosta, Ricardo
    Nobre, Paulo
    Resende, Nicole Costa
    Chou, Sin Chan
    Lyra, Andre de Arruda
    [J]. REGIONAL ENVIRONMENTAL CHANGE, 2023, 23 (01)
  • [6] Water balance components and climate extremes over Brazil under 1.5 °C and 2.0 °C of global warming scenarios
    Priscila da Silva Tavares
    Ricardo Acosta
    Paulo Nobre
    Nicole Costa Resende
    Sin Chan Chou
    André de Arruda Lyra
    [J]. Regional Environmental Change, 2023, 23
  • [7] Tibetan Plateau amplification of climate extremes under global warming of 1.5 °C, 2 °C and 3 °C
    You, Qinglong
    Wu, Fangying
    Shen, Liucheng
    Pepin, Nick
    Jiang, Zhihong
    Kang, Shichang
    [J]. GLOBAL AND PLANETARY CHANGE, 2020, 192 (192)
  • [8] Scenario dependence of future changes in climate extremes under 1.5 °C and 2 °C global warming
    Wang, Zhili
    Lin, Lei
    Zhang, Xiaoye
    Zhang, Hua
    Liu, Liangke
    Xu, Yangyang
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [9] Scenario dependence of future changes in climate extremes under 1.5 °C and 2 °C global warming
    Zhili Wang
    Lei Lin
    Xiaoye Zhang
    Hua Zhang
    Liangke Liu
    Yangyang Xu
    [J]. Scientific Reports, 7
  • [10] Future Global Population Exposure to Record-Breaking Climate Extremes
    Li, Bohao
    Liu, Kai
    Wang, Ming
    Wang, Qianzhi
    He, Qian
    Li, Chenxia
    [J]. EARTHS FUTURE, 2023, 11 (11)