New exact travelling wave solutions of bidirectional wave equations

被引:0
|
作者
JONU LEE
RATHINASAMY SAKTHIVEL
机构
[1] Sungkyunkwan University,Department of Mathematics
来源
Pramana | 2011年 / 76卷
关键词
Travelling wave solutions; tanh–coth function method; Riccati equations; symbolic computation; 02.30.Jr; 02.30.Ik;
D O I
暂无
中图分类号
学科分类号
摘要
The surface water waves in a water tunnel can be described by systems of the form [Bona and Chen, PhysicaD116, 191 (1998)] 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \label{BWE} \left\{ \begin{array}{l} v_t+u_x+(uv)_x+au_{xxx}-bv_{xxt}=0, \\ u_t+v_x+uu_x+cv_{xxx}-du_{xxt}=0, \end{array} \right. $$\end{document}where a, b, c and d are real constants. In general, the exact travelling wave solutions will be helpful in the theoretical and numerical study of the nonlinear evolution systems. In this paper, we obtain exact travelling wave solutions of system (1) using the modified \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tanh$\end{document}–\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\coth$\end{document} function method with computerized symbolic computation.
引用
收藏
页码:819 / 829
页数:10
相关论文
共 50 条