The surface water waves in a water tunnel can be described by systems of the form [Bona and Chen, PhysicaD116, 191 (1998)]
1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \label{BWE} \left\{ \begin{array}{l} v_t+u_x+(uv)_x+au_{xxx}-bv_{xxt}=0, \\ u_t+v_x+uu_x+cv_{xxx}-du_{xxt}=0, \end{array} \right. $$\end{document}where a, b, c and d are real constants. In general, the exact travelling wave solutions will be helpful in the theoretical and numerical study of the nonlinear evolution systems. In this paper, we obtain exact travelling wave solutions of system (1) using the modified \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\tanh$\end{document}–\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\coth$\end{document} function method with computerized symbolic computation.