Generalized Gibbs Ensemble of the Ablowitz–Ladik Lattice, Circular β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-Ensemble and Double Confluent Heun Equation

被引:0
|
作者
Tamara Grava
Guido Mazzuca
机构
[1] University of Bristol,School of Mathematics
[2] SISSA,Mathematics Area
[3] INFN sezione di Trieste,Mathematics
[4] The Royal Institute of Technology,undefined
关键词
D O I
10.1007/s00220-023-04642-8
中图分类号
学科分类号
摘要
We consider the discrete defocusing nonlinear Schrödinger equation in its integrable version, which is called defocusing Ablowitz–Ladik lattice. We consider periodic boundary conditions with period N and initial data sampled according to the Generalized Gibbs ensemble. In this setting, the Lax matrix of the Ablowitz–Ladik lattice is a random CMV-periodic matrix and it is related to the Killip-Nenciu Circular β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-ensemble at high-temperature. We obtain the generalized free energy of the Ablowitz–Ladik lattice and the density of states of the random Lax matrix by establishing a mapping to the one-dimensional log-gas. For the Gibbs measure related to the Hamiltonian of the Ablowitz–Ladik flow, we obtain the density of states via a particular solution of the double-confluent Heun equation.
引用
收藏
页码:1689 / 1729
页数:40
相关论文
共 50 条