Existence and regularity results for a class of singular parabolic problems with L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document} data

被引:0
|
作者
Ida de Bonis [1 ]
Maria Michaela Porzio [1 ]
机构
[1] Sapienza Università di Roma,Dipartimento di Pianificazione Design Tecnologia dell’Architettura
关键词
Nonlinear parabolic equations; Singular lower order terms; Degenerate parabolic equations; Decay estimates; Asymptotic behavior; 35K55; 35K67; 35K65;
D O I
10.1007/s00030-024-00935-6
中图分类号
学科分类号
摘要
In this paper we prove existence and regularity results for a class of parabolic problems with irregular initial data and lower order terms singular with respect to the solution. We prove that, even if the initial datum is not bounded but only in L1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1(\Omega )$$\end{document}, there exists a solution that “instantly” becomes bounded. Moreover we study the behavior in time of these solutions showing that this class of problems admits global solutions which all have the same behavior in time independently of the size of the initial data.
引用
收藏
相关论文
共 50 条