Nehari-Type Theorem for Non-commutative Hardy Spaces

被引:0
|
作者
F. Sukochev
K. Tulenov
D. Zanin
机构
[1] University of New South Wales,School of Mathematics and Statistics
[2] Institute of Mathematics and Mathematical Modeling,undefined
[3] Al-Farabi Kazakh National University,undefined
来源
关键词
Von Neumann algebra; Non-commutative Hardy space; Non-commutative symmetric space; Nehari-type theorem; 46L51; 46L52;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we give an answer to a conjecture due to Muscalu. We also prove a non-commutative analogue of Cwikel’s theorem.
引用
收藏
页码:1789 / 1802
页数:13
相关论文
共 50 条
  • [1] Nehari-Type Theorem for Non-commutative Hardy Spaces
    Sukochev, F.
    Tulenov, K.
    Zanin, D.
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (03) : 1789 - 1802
  • [2] THE NON-COMMUTATIVE HARDY-LITTLEWOOD MAXIMAL OPERATOR ON NON-COMMUTATIVE LORENTZ SPACES
    Bekbayev, N. T.
    Tulenov, K. S.
    [J]. JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2020, 106 (02): : 31 - 38
  • [3] BOHR'S INEQUALITY FOR NON-COMMUTATIVE HARDY SPACES
    Lata, Sneh
    Singh, Dinesh
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (01) : 201 - 211
  • [4] Bezout's theorem for non-commutative projective spaces
    Mori, I
    Smith, SP
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 157 (2-3) : 279 - 299
  • [5] Norm of the Hilbert matrix on Bergman and Hardy spaces and a theorem of Nehari type
    Dostanic, Milutin
    Jevtic, Miroljub
    Vukotic, Dragan
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (11) : 2800 - 2815
  • [6] Non-commutative Hardy inequalities
    Hansen, Frank
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 : 1009 - 1016
  • [7] REFLEXIVE OPERATOR-ALGEBRAS ON NON-COMMUTATIVE HARDY-SPACES
    PELIGRAD, C
    [J]. MATHEMATISCHE ANNALEN, 1980, 253 (02) : 165 - 175
  • [8] A non-commutative Bertini theorem
    Rennemo, Jorgen Vold
    Segal, Ed
    Van den Bergh, Michel
    [J]. JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2019, 13 (02) : 609 - 616
  • [9] NON-COMMUTATIVE SPECTRAL THEOREM
    BARKER, GP
    EIFLER, LQ
    KEZLAN, TP
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1978, 20 (02) : 95 - 100
  • [10] A non-commutative Bayes' theorem
    Parzygnat, Arthur J.
    Russo, Benjamin P.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 644 : 28 - 94