Deep learning segmentation results in precise delineation of the putamen in multiple system atrophy

被引:0
|
作者
Alexander Rau
Nils Schröter
Michel Rijntjes
Fabian Bamberg
Wolfgang H. Jost
Maxim Zaitsev
Cornelius Weiller
Stephan Rau
Horst Urbach
Marco Reisert
Maximilian F. Russe
机构
[1] University of Freiburg,Department of Neuroradiology, Medical Center – University of Freiburg, Faculty of Medicine
[2] University of Freiburg,Department of Diagnostic and Interventional Radiology, Medical Center – University of Freiburg, Faculty of Medicine
[3] University of Freiburg,Department of Neurology and Clinical Neuroscience, Medical Center – University of Freiburg, Faculty of Medicine
[4] Parkinson-Klinik Ortenau,Medical Physics, Department of Diagnostic and Interventional Radiology, Medical Center, Faculty of Medicine
[5] University of Freiburg,Department of Stereotactic and Functional Neurosurgery, Medical Center
[6] University of Freiburg, University of Freiburg, Faculty of Medicine
[7] University of Freiburg,undefined
来源
European Radiology | 2023年 / 33卷
关键词
Parkinsonian disorders; Putamen; Striatonigral degeneration; Multiple system atrophy; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:7160 / 7167
页数:7
相关论文
共 50 条
  • [1] Deep learning segmentation results in precise delineation of the putamen in multiple system atrophy
    Rau, Alexander
    Schroeter, Nils
    Rijntjes, Michel
    Bamberg, Fabian
    Jost, Wolfgang H. H.
    Zaitsev, Maxim
    Weiller, Cornelius
    Rau, Stephan
    Urbach, Horst
    Reisert, Marco
    Russe, Maximilian F. F.
    EUROPEAN RADIOLOGY, 2023, 33 (10) : 7160 - 7167
  • [2] Speculating the timing of iron deposition in the putamen in multiple system atrophy
    Lee, Myung Jun
    Kim, Tae-Hyung
    Kim, Seung Joo
    Mun, Chi-Woong
    Shin, Jin-Hong
    Lee, Gha-Hyun
    Lee, Jae-Hyeok
    PARKINSONISM & RELATED DISORDERS, 2019, 63 : 106 - 110
  • [3] Transcriptional changes in multiple system atrophy and Parkinson's disease putamen
    Vogt, Ina R.
    Lees, Andrew J.
    Evert, Bernd O.
    Klockgether, Thomas
    Bonin, Michael
    Wuellner, Ullrich
    EXPERIMENTAL NEUROLOGY, 2006, 199 (02) : 465 - 478
  • [4] Deep learning based ECG segmentation for delineation of diverse arrhythmias
    Joung, Chankyu
    Kim, Mijin
    Paik, Taejin
    Kong, Seong-Ho
    Oh, Seung-Young
    Jeon, Won Kyeong
    Jeon, Jae-hu
    Hong, Joong-Sik
    Kim, Wan-Joong
    Kook, Woong
    Cha, Myung-Jin
    van Koert, Otto
    PLOS ONE, 2024, 19 (06):
  • [5] Geographic Atrophy Segmentation Using Multimodal Deep Learning
    Spaide, Theodore
    Jiang, Jiaxiang
    Patil, Jasmine
    Anegondi, Neha
    Steffen, Verena
    Kawczynski, Michael G.
    Newton, Elizabeth M.
    Rabe, Christina
    Gao, Simon S.
    Lee, Aaron Y.
    Holz, Frank G.
    Sadda, Srinivas
    Schmitz-Valckenberg, Steffen
    Ferrara, Daniela
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2023, 12 (07):
  • [6] 18F-AV-1451 Binds to Putamen in Multiple System Atrophy
    Cho, Hanna
    Choi, Jae Yong
    Lee, Seung Ha
    Ryu, Young Hoon
    Lee, Myung Sik
    Lyoo, Chul Hyoung
    MOVEMENT DISORDERS, 2017, 32 (01) : 171 - 173
  • [7] Quantifying Uncertainty of Deep Learning Models for the Segmentation of Geographic Atrophy
    Spaide, Theodore
    Owen, Julia
    De Sisternes, Luis
    Lewis, Warren
    Manivannan, Niranchana
    Pramil, Varsha
    Sheikh, Harris Asad
    Waheed, Nadia K.
    Lee, Cecilia S.
    Lee, Aaron Y.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [8] Cell type-specific neuronal loss in the putamen of patients with multiple system atrophy
    Sato, Kenta
    Kaji, Ryuji
    Matsumoto, Sadayuki
    Goto, Satoshi
    MOVEMENT DISORDERS, 2007, 22 (05) : 738 - 742
  • [10] Automatic segmentation of geographic atrophy in OCT scans using deep learning
    Cheng, Yuxuan
    Chu, Zhongdi
    Shen, Mengxi
    Laiginhas, Rita
    Liu, Jeremy
    Shi, Yingying
    Li, Jianqing
    Zhou, Hao
    Zhang, Qinqin
    Gregori, Giovanni
    Rosenfeld, Philip J.
    Wang, Ruikang K.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)