Yang-Mills solutions and Spin(7)-instantons on cylinders over coset spaces with G2-structure

被引:0
|
作者
Alexander S. Haupt
机构
[1] University of Hamburg,Department of Mathematics and Center for Mathematical Physics
[2] University of Hamburg,II. Institute for Theoretical Physics
[3] Max-Planck-Institut für Physik,undefined
关键词
Solitons Monopoles and Instantons; Flux compactifications; Differential and Algebraic Geometry; Supergravity Models;
D O I
暂无
中图分类号
学科分类号
摘要
We study g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{g} $$\end{document} -valued Yang-Mills fields on cylinders ZG/H=ℝ×G/H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Z\left(G/H\right)=\mathbb{R}\times G/H $$\end{document}, where G/H is a compact seven-dimensional coset space with G2-structure, g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{g} $$\end{document} is the Lie algebra of G, and Z(G/H) inherits a Spin(7)-structure. After imposing a general G-invariance condition, Yang-Mills theory with torsion on Z(G/H) reduces to Newtonian mechanics of a point particle moving in ℝn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb{R}}^n $$\end{document} under the influence of some quartic potential and possibly additional constraints. The kinematics and dynamics depends on the chosen coset space. We consider in detail three coset spaces with nearly parallel G2-structure and four coset spaces with SU(3)-structure. For each case, we analyze the critical points of the potential and present a range of finite-energy solutions. We also study a higher-dimensional analog of the instanton equation. Its solutions yield G-invariant Spin(7)-instanton configurations on Z(G/H), which are special cases of Yang-Mills configurations with torsion.
引用
收藏
相关论文
共 27 条
  • [1] Yang-Mills solutions and Spin(7)-instantons on cylinders over coset spaces with G2-structure
    Haupt, Alexander S.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2016, (03):
  • [2] Yang-Mills solutions and dyons on cylinders over coset spaces with Sasakian structure
    Tormaehlen, Maike
    [J]. NUCLEAR PHYSICS B, 2016, 902 : 162 - 185
  • [3] Instantons and Yang-Mills Flows on Coset Spaces
    Ivanova, Tatiana A.
    Lechtenfeld, Olaf
    Popov, Alexander D.
    Rahn, Thorsten
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2009, 89 (03) : 231 - 247
  • [4] Spin(7)-manifolds and symmetric Yang-Mills instantons
    Etesi, G
    [J]. PHYSICS LETTERS B, 2001, 521 (3-4) : 391 - 399
  • [5] Spin(7) Instantons and Hermitian Yang-Mills Connections for the Stenzel Metric
    Papoulias, Vasileios Ektor
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 384 (03) : 2009 - 2066
  • [6] On the Energy Spectrum of Yang-Mills Instantons over Asymptotically Locally Flat Spaces
    Etesi, Gabor
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 322 (01) : 1 - 17
  • [7] Yang-Mills solutions on Minkowski space via non-compact coset spaces
    Kumar, Kaushlendra
    Lechtenfeld, Olaf
    Costa, Gabriel Picanco
    Roehrig, Jona
    [J]. PHYSICS LETTERS B, 2022, 835
  • [8] Yang-Mills instantons and dyons on homogeneous G2-manifolds
    Irina Bauer
    Tatiana A. Ivanova
    Olaf Lechtenfeld
    Felix Lubbe
    [J]. Journal of High Energy Physics, 2010
  • [9] Yang-Mills instantons and dyons on homogeneous G2-manifolds
    Bauer, Irina
    Ivanova, Tatiana A.
    Lechtenfeld, Olaf
    Lubbe, Felix
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2010, (10):
  • [10] Non-Abelian Vortices, Super Yang-Mills Theory and Spin(7)-Instantons
    Popov, Alexander D.
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2010, 92 (03) : 253 - 268