A Geometric Proof of Stallings' Theorem on Groups with More than One End

被引:0
|
作者
Graham A. Niblo
机构
[1] University of Southampton,Faculty of Mathematical Studies
来源
Geometriae Dedicata | 2004年 / 105卷
关键词
amalgamated free product; Bass–Serre theory; CAT(0) cube complex; ends; HNN extension; singularity obstruction; Stallings' theorem;
D O I
暂无
中图分类号
学科分类号
摘要
Stallings showed that a finitely generated group which has more than one end splits as an amalgamated free product or an HNN extension over a finite subgroup. Dunwoody gave a new geometric proof of the theorem for the class of almost finitely presented groups, and separately, using somewhat different methods, generalised it to a larger class of splittings. Here we adapt the geometric method to the class of finitely generated groups using Sageev's generalisation of Bass Serre theory concerning group pairs with more than one end, and show that this new proof simultaneously establishes Dunwoody's generalisation.
引用
收藏
页码:61 / 76
页数:15
相关论文
共 50 条