Arsenic mobilization by anaerobic iron-dependent methane oxidation

被引:40
|
作者
Glodowska, Martyna [1 ,2 ]
Stopelli, Emiliano [3 ]
Schneider, Magnus [4 ]
Rathi, Bhasker [5 ,6 ]
Straub, Daniel [7 ]
Lightfoot, Alex [3 ]
Kipfer, Rolf [3 ,8 ]
Berg, Michael [3 ]
Jetten, Mike [9 ]
Kleindienst, Sara
Kappler, Andreas [1 ]
Glodowska, M.
机构
[1] Univ Tubingen, Ctr Appl Geosci, Geomicrobiol, D-72074 Tubingen, Germany
[2] Univ Tubingen, Ctr Appl Geosci, Microbial Ecol, D-72074 Tubingen, Germany
[3] Swiss Fed Inst Aquat Sci & Technol, Eawag, CH-8600 Dubendorf, Switzerland
[4] KIT, Inst Appl Geosci, Div Aquat Geochem, D-76131 Karlsruhe, Germany
[5] Univ Tubingen, Ctr Appl Geosci, Hydrogeol, D-72074 Tubingen, Germany
[6] CSIRO Land & Water, Floreat, WA 6014, Australia
[7] Univ Tubingen, Quantitat Biol Ctr QBiC, D-72074 Tubingen, Germany
[8] Swiss Fed Inst Technol & Technol, Inst Geochem & Petrol, ETHZ, CH-8092 Zurich, Switzerland
[9] Radboud Univ Nijmegen, Inst Water & Wetland Res, NL-6525 Nijmegen, Netherlands
来源
COMMUNICATIONS EARTH & ENVIRONMENT | 2020年 / 1卷 / 01期
关键词
ORGANIC-MATTER; DRINKING-WATER; GROUNDWATER; CONTAMINATION; BANGLADESH; RETARDATION; ADSORPTION; EXTRACTION; REDUCTION; AQUIFERS;
D O I
10.1038/s43247-020-00037-y
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Arsenic groundwater contamination threatens the health of millions of people worldwide, particularly in South and Southeast Asia. In most cases, the release of arsenic from sediment was caused by microbial reductive dissolution of arsenic-bearing iron(III) minerals with organic carbon being used as microbial electron donor. Although in many arsenic-contaminated aquifers high concentrations of methane were observed, its role in arsenic mobilization is unknown. Here, using microcosms experiments and hydrogeochemical and microbial community analyses, we demonstrate that methane functions as electron donor for methanotrophs, triggering the reductive dissolution of arsenic-bearing iron(III) minerals, increasing the abundance of genes related to methane oxidation, and ultimately mobilizing arsenic into the water. Our findings provide evidence for a methane-mediated mechanism for arsenic mobilization that is distinct from previously described pathways. Taking this together with the common presence of methane in arsenic-contaminated aquifers, we suggest that this methane-driven arsenic mobilization may contribute to arsenic contamination of groundwater on a global scale. Methane can increase groundwater arsenic contamination by triggering the dissolution of arsenic-bearing iron oxide minerals by methane-oxidizing microorganisms, according to microcosm experiments on arsenic-bearing sediments from the Red River Delta, Vietnam.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Author Correction: Arsenic mobilization by anaerobic iron-dependent methane oxidation
    Martyna Glodowska
    Emiliano Stopelli
    Magnus Schneider
    Bhasker Rathi
    Daniel Straub
    Alex Lightfoot
    Rolf Kipfer
    Michael Berg
    Mike Jetten
    Sara Kleindienst
    Andreas Kappler
    [J]. Communications Earth & Environment, 1
  • [2] Archaea catalyze iron-dependent anaerobic oxidation of methane
    Ettwig, Katharina F.
    Zhu, Baoli
    Speth, Daan
    Keltjens, Jan T.
    Jetten, Mike S. M.
    Kartal, Boran
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (45) : 12792 - 12796
  • [3] The possible occurrence of iron-dependent anaerobic methane oxidation in an Archean Ocean analogue
    Fleur A. E. Roland
    Alberto V. Borges
    François Darchambeau
    Marc Llirós
    Jean-Pierre Descy
    Cédric Morana
    [J]. Scientific Reports, 11
  • [4] The possible occurrence of iron-dependent anaerobic methane oxidation in an Archean Ocean analogue
    Roland, Fleur A. E.
    Borges, Alberto V.
    Darchambeau, Francois
    Lliros, Marc
    Descy, Jean-Pierre
    Morana, Cedric
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [5] Iron-dependent anaerobic oxidation of methane in coastal surface sediments: Potential controls and impact
    Rooze, Jurjen
    Egger, Matthias
    Tsandev, Iana
    Slomp, Caroline P.
    [J]. LIMNOLOGY AND OCEANOGRAPHY, 2016, 61 : S267 - S282
  • [6] Manganese- and Iron-Dependent Marine Methane Oxidation
    Beal, Emily J.
    House, Christopher H.
    Orphan, Victoria J.
    [J]. SCIENCE, 2009, 325 (5937) : 184 - 187
  • [7] Direct Methane Oxidation by Copper- and Iron-Dependent Methane Monooxygenases
    Tucci, Frank J.
    Rosenzweig, Amy C.
    [J]. CHEMICAL REVIEWS, 2024, 124 (03) : 1288 - 1320
  • [8] Niche Differentiation of Sulfate- and Iron-Dependent Anaerobic Methane Oxidation and Methylotrophic Methanogenesis in Deep Sea Methane Seeps
    Li, Haizhou
    Yang, Qunhui
    Zhou, Huaiyang
    [J]. FRONTIERS IN MICROBIOLOGY, 2020, 11
  • [9] Coupled anaerobic methane oxidation and reductive arsenic mobilization in wetland soils
    Shi, Ling-Dong
    Guo, Ting
    Lv, Pan-Long
    Niu, Zi-Fan
    Zhou, Yu-Jie
    Tang, Xian-Jin
    Zheng, Ping
    Zhu, Li-Zhong
    Zhu, Yong-Guan
    Kappler, Andreas
    Zhao, He-Ping
    [J]. NATURE GEOSCIENCE, 2020, 13 (12) : 799 - +
  • [10] Coupled anaerobic methane oxidation and reductive arsenic mobilization in wetland soils
    Ling-Dong Shi
    Ting Guo
    Pan-Long Lv
    Zi-Fan Niu
    Yu-Jie Zhou
    Xian-Jin Tang
    Ping Zheng
    Li-Zhong Zhu
    Yong-Guan Zhu
    Andreas Kappler
    He-Ping Zhao
    [J]. Nature Geoscience, 2020, 13 : 799 - 805