3D Printing of NiCoP/Ti3C2 MXene Architectures for Energy Storage Devices with High Areal and Volumetric Energy Density

被引:0
|
作者
Lianghao Yu
Weiping Li
Chaohui Wei
Qifeng Yang
Yuanlong Shao
Jingyu Sun
机构
[1] Soochow University,College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province
来源
Nano-Micro Letters | 2020年 / 12卷
关键词
3D printing; NiCoP/MXene; Asymmetric supercapacitor; Energy density; Tailorable loading;
D O I
暂无
中图分类号
学科分类号
摘要
Utilizing 3D printing allows the fine construction of electrodes with tailorable thickness and precise tuning of mass loading of active materials.3D-printed NiCoP/MXene//AC asymmetrical supercapacitor full cells harvest a record-high areal/volumetric energy density of 0.89 mWh cm−2/2.2 mWh cm−3.
引用
收藏
相关论文
共 50 条
  • [1] 3D Printing of NiCoP/Ti3C2 MXene Architectures for Energy Storage Devices with High Areal and Volumetric Energy Density
    Yu, Lianghao
    Li, Weiping
    Wei, Chaohui
    Yang, Qifeng
    Shao, Yuanlong
    Sun, Jingyu
    [J]. NANO-MICRO LETTERS, 2020, 12 (01)
  • [2] 3D Printing of NiCoP/Ti3C2 MXene Architectures for Energy Storage Devices with High Areal and Volumetric Energy Density
    Lianghao Yu
    Weiping Li
    Chaohui Wei
    Qifeng Yang
    Yuanlong Shao
    Jingyu Sun
    [J]. Nano-Micro Letters, 2020, 12 (10) : 304 - 316
  • [3] 3D Printing of Tunable Energy Storage Devices with Both High Areal and Volumetric Energy Densities
    Gao, Tingting
    Zhou, Zhan
    Yu, Jianyong
    Zhao, Jing
    Wang, Guiling
    Cao, Dianxue
    Ding, Bin
    Li, Yiju
    [J]. ADVANCED ENERGY MATERIALS, 2019, 9 (08)
  • [4] 3D printing aqueous Ti3C2Tx inks for MXene-based energy devices
    Fagade, Mofetoluwa
    Patil, Dhanush
    Thummalapalli, Sri Vaishnavi
    Jambhulkar, Sayli
    Ravichandran, Dharneedar
    Kannan, Arunachala M.
    Song, Kenan
    [J]. MATERIALS ADVANCES, 2023, 4 (18): : 4103 - 4109
  • [5] 3D MXene Architectures for Efficient Energy Storage and Conversion
    Li, Ke
    Liang, Meiying
    Wang, Hao
    Wang, Xuehang
    Huang, Yanshan
    Coelho, Joao
    Pinilla, Sergio
    Zhang, Yonglai
    Qi, Fangwei
    Nicolosi, Valeria
    Xu, Yuxi
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (47)
  • [6] 3D Printing of Electrochemical Energy Storage Devices: A Review of Printing Techniques and Electrode/Electrolyte Architectures
    Cheng, Meng
    Deivanayagam, Ramasubramonian
    Shahbazian-Yassar, Reza
    [J]. BATTERIES & SUPERCAPS, 2020, 3 (02) : 130 - 146
  • [7] In situ 3D printing of implantable energy storage devices
    Krishnadoss, Vaishali
    Kanjilal, Baishali
    Hesketh, Alexander
    Miller, Caleb
    Mugweru, Amos
    Akbard, Mohsen
    Khademhosseini, Ali
    Leijten, Jeroen
    Noshadi, Iman
    [J]. CHEMICAL ENGINEERING JOURNAL, 2021, 409
  • [8] All-Inkjet-Printed Ti3C2 MXene Capacitor for Textile Energy Storage
    Gibertini, Eugenio
    Lissandrello, Federico
    Bertoli, Luca
    Viviani, Prisca
    Magagnin, Luca
    [J]. COATINGS, 2023, 13 (02)
  • [9] Electrode thickness design toward bulk energy storage devices with high areal/volumetric energy density
    Wang, Feng
    Zhang, Lin
    Zhang, Qian
    Yang, Jinjiang
    Duan, Gaigai
    Xu, Wenhui
    Yang, Feng
    Jiang, Shaohua
    [J]. APPLIED ENERGY, 2021, 289
  • [10] Smart Energy Bricks: Ti3C2@Polymer Electrochemical Energy Storage inside Bricks by 3D Printing
    Vaghasiya, Jayraj V.
    Mayorga-Martinez, Carmen C.
    Pumera, Martin
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (48)