Silicate regulation of new production in the equatorial Pacific upwelling

被引:0
|
作者
Richard C. Dugdale
Frances P. Wilkerson
机构
[1] Romberg Tiburon Centers,
[2] San Francisco State University,undefined
来源
Nature | 1998年 / 391卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Surface waters of the eastern equatorial Pacific Ocean present the enigma of apparently high plant-nutrient concentrations but low phytoplankton biomass and productivity1. One explanation for this ‘high-nitrate, low-chlorophyll’ (HNLC) phenomenon has been that growth is limited by iron availability2,3. Here we use field data and a simple silicon-cycle model4 to investigate the HNLC condition for the upwelling zone of this ocean region. Measured silicate concentrations in surface waters are low and largely invariant with time, and set the upper limit on the total possible biological utilization of dissolved inorganic carbon. Chemical and biological data from surface waters indicate that diatoms—silica-shelled phytoplankton—carry out all the ‘new production’ (nitrate uptake)5. Smaller phytoplankton (picoplankton) accomplish most of the total primary production, largely fuelled by nitrogen regenerated in reduced forms as a result of grazing by zooplankton. The model predicts values of new and export production (the production exported to below the euphotic zone) that compare well with measured values6. New and export production are in balance for biogenic silica, whereas new production exceeds export for nitrogen. The HNLC condition in the upwelling zone can therefore be understood to be due to a chemostat-like regulation of nitrate uptake by upwelled silicate supply to diatoms: ‘low-silicate HNLC’. These results are not inconsistent with observations of iron-fertilized diatom growth during in situ experiments in ‘low-iron HNLC’ waters outside this upwelling zone2,3, but reflect the role of different supply rates of iron and silicate in determining the nature of the HNLC condition.
引用
收藏
页码:270 / 273
页数:3
相关论文
共 50 条
  • [1] Silicate regulation of new production in the equatorial Pacific upwelling
    Dugdale, RC
    Wilkerson, FP
    [J]. NATURE, 1998, 391 (6664) : 270 - 273
  • [2] The regulation of equatorial Pacific new production and pCO2 by silicate-limited diatoms
    Dugdale, Richard
    Chai, Fei
    Feely, Richard
    Measures, Chris
    Parker, Alex
    Wilkerson, Frances
    [J]. DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 2011, 58 (3-4) : 477 - 492
  • [3] Iron and silicate regulation of new and export production in the equatorial Pacific: A physical-biological model study
    Jiang, MS
    Chai, F
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2004, 31 (07) : L073071 - 4
  • [4] AN ESTIMATE OF EQUATORIAL UPWELLING IN THE PACIFIC
    WYRTKI, K
    [J]. JOURNAL OF PHYSICAL OCEANOGRAPHY, 1981, 11 (09) : 1205 - 1214
  • [5] EQUATORIAL UPWELLING EVENTS IN THE CENTRAL PACIFIC
    WYRTKI, K
    ELDIN, G
    [J]. JOURNAL OF PHYSICAL OCEANOGRAPHY, 1982, 12 (09) : 984 - 988
  • [6] AN ESTIMATE OF NEW PRODUCTION IN THE EQUATORIAL PACIFIC
    CHAVEZ, FP
    BARBER, RT
    [J]. DEEP-SEA RESEARCH PART A-OCEANOGRAPHIC RESEARCH PAPERS, 1987, 34 (07): : 1229 - 1243
  • [7] NEW PRODUCTION IN THE CENTRAL EQUATORIAL PACIFIC
    PENA, MA
    HARRISON, WG
    LEWIS, MR
    [J]. MARINE ECOLOGY PROGRESS SERIES, 1992, 80 (2-3) : 265 - 274
  • [8] Equatorial upwelling in the western Pacific warm pool
    Helber, RW
    Weisberg, RH
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2001, 106 (C5) : 8989 - 9003
  • [9] VELOCITY ESTIMATIONS OF THE EQUATORIAL UPWELLING IN THE CENTRAL PACIFIC
    BUBNOV, VA
    [J]. OKEANOLOGIYA, 1986, 26 (04): : 597 - 602
  • [10] Extratropical sources of equatorial Pacific upwelling in an OGCM
    Rodgers, KB
    Blanke, B
    Madec, G
    Aumont, O
    Ciais, P
    Dutay, JC
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (02) : 56 - 1