This paper deals with the blow-up rate and uniqueness of large solutions of the elliptic equation \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\Delta u = b(x)f(u)+c(x)g(u)|\nabla u|^q}$$\end{document} in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\Omega \subset \mathbb{R}^N}$$\end{document}, where q > 0, f(u) and g(u) are regularly varying functions at infinity, and the weight functions \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${b(x),\,c(x) \in C^\alpha(\Omega,\,\mathbb{R}^+)}$$\end{document}, 0 < α < 1, may be singular or degenerate on the boundary \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\partial\Omega}$$\end{document}. Combining the regular variation theoretic approach of Cîrstea–Rădulescu and the systematic approach of Bandle–Giarrusso, we are able to improve and generalize most of the previously available results in the literature.