Blow-up rates and uniqueness of large solutions for elliptic equations with nonlinear gradient term and singular or degenerate weights

被引:0
|
作者
Yujuan Chen
Peter Y. H. Pang
Mingxin Wang
机构
[1] Nantong University,Department of Mathematics
[2] National University of Singapore,Department of Mathematics
[3] Harbin Institute of Technology,Natural Science Research Center
来源
Manuscripta Mathematica | 2013年 / 141卷
关键词
35J25; 35J65; 35K57;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the blow-up rate and uniqueness of large solutions of the elliptic equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta u = b(x)f(u)+c(x)g(u)|\nabla u|^q}$$\end{document} in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega \subset \mathbb{R}^N}$$\end{document}, where q > 0, f(u) and g(u) are regularly varying functions at infinity, and the weight functions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${b(x),\,c(x) \in C^\alpha(\Omega,\,\mathbb{R}^+)}$$\end{document}, 0 < α < 1, may be singular or degenerate on the boundary \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\partial\Omega}$$\end{document}. Combining the regular variation theoretic approach of Cîrstea–Rădulescu and the systematic approach of Bandle–Giarrusso, we are able to improve and generalize most of the previously available results in the literature.
引用
收藏
页码:171 / 193
页数:22
相关论文
共 50 条