Kink Collisions in Curved Field Space

被引:0
|
作者
Pontus Ahlqvist
Kate Eckerle
Brian Greene
机构
[1] Columbia University,Physics Department
[2] Columbia University,Department of Physics and Department of Applied Mathematics
[3] Columbia University,Department of Physics and Department of Mathematics
关键词
Solitons Monopoles and Instantons; Effective field theories;
D O I
暂无
中图分类号
学科分类号
摘要
We study bubble universe collisions in the ultrarelativistic limit with the new feature of allowing for nontrivial curvature in field space. We establish a simple geometrical interpretation of such collisions in terms of a double family of field profiles whose tangent vector fields stand in mutual parallel transport. This provides a generalization of the well-known flat field space limit of the free passage approximation. We investigate the limits of this approximation and illustrate our analytical results with numerical simulations.
引用
收藏
相关论文
共 50 条
  • [1] Kink Collisions in Curved Field Space
    Ahlqvist, Pontus
    Eckerle, Kate
    Greene, Brian
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2015, (04):
  • [2] KINK PROFILE IN A CURVED SPACE
    Dobrowolski, T.
    [J]. ACTA PHYSICA POLONICA B, 2015, 46 (08): : 1457 - 1472
  • [3] Relativistic moduli space for kink collisions
    Adam, C.
    Manton, N. S.
    Oles, K.
    Romanczukiewicz, T.
    Wereszczynski, A.
    [J]. PHYSICAL REVIEW D, 2022, 105 (06)
  • [4] Moduli Space for Kink Collisions with Moving Center of Mass
    Adam, Christoph
    Halcrow, Chris
    Oles, Katarzyna
    Romanczukiewicz, Tomasz
    Wereszczynski, Andrzej
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2023, 19
  • [5] Relativistic moduli space and critical velocity in kink collisions
    Adam C.
    Ciurla D.
    Oles K.
    Romanczukiewicz T.
    Wereszczynski A.
    [J]. Physical Review E, 2023, 108 (02)
  • [6] Kink properties on curved manifold
    Dobrowolski, T.
    [J]. PHYSICS LETTERS A, 2009, 373 (42) : 3867 - 3871
  • [7] Kink-boundary collisions in a two-dimensional scalar field theory
    Antunes, ND
    Copeland, EJ
    Hindmarsh, M
    Lukas, A
    [J]. PHYSICAL REVIEW D, 2004, 69 (06): : 11
  • [8] Kink motion in a curved Josephson junction
    Dobrowolski, T.
    [J]. PHYSICAL REVIEW E, 2009, 79 (04):
  • [9] The inflationary bispectrum with curved field-space
    Elliston, Joseph
    Seery, David
    Tavakol, Reza
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2012, (11):
  • [10] STRING FIELD-THEORY IN CURVED SPACE
    KIKKAWA, K
    MAENO, M
    SAWADA, S
    [J]. PHYSICS LETTERS B, 1987, 197 (04) : 524 - 530