PFIMD: a parallel MapReduce-based algorithm for frequent itemset mining

被引:0
|
作者
Mao Yimin
Geng Junhao
Deborah Simon Mwakapesa
Yaser Ahangari Nanehkaran
Zhang Chi
Deng Xiaoheng
Chen Zhigang
机构
[1] Jiangxi University of Science and Technology,School of Information Engineering
[2] Central South University,School of Computer Science and Engineering
来源
Multimedia Systems | 2021年 / 27卷
关键词
DiffNodeset structure; MapReduce; 2-Way comparison strategy; Load balancing strategy based on dynamic grouping; Frequent item mining;
D O I
暂无
中图分类号
学科分类号
摘要
Frequent itemset mining (FIM) is a significant data mining technique which is widely adopted in numerous applications for exploring frequent items. With the rapid growth and expansion of datasets, FIM has become an interesting topic for many researchers, which has triggered many innovations of numerous FIM algorithms in the big data environment. This study aims to design an optimization parallel frequent itemset mining algorithm based on MapReduce, named as PFIMD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{PFIMD}}$$\end{document} algorithm, to deal with the problem of time and space complexity during processing and computing item sets, as well as the failure to adequately balance the load among parallel tasks in the existing parallel FIM algorithms. First, a structure called DiffNodeset\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{DiffNodeset}}$$\end{document} is adopted for avoiding the increase of N-list\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N{-}list$$\end{document} cardinality in the MRPrePost\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{MRPrePost}}$$\end{document} algorithm effectively. Then, a 2-way comparison strategy is designed to speed up the DiffNodeset\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{DiffNodeset}}$$\end{document} generation of 2-itemsets and reduce the time complexity of the algorithm. Finally, the steps of the improved algorithm are parallelized using the cloud computing platform Hadoop and the programming model MapReduce. Moreover, to achieve a uniform grouping of each item in F-list\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F{-}list$$\end{document}, a load balancing strategy based on dynamic grouping is proposed, which solves the problem of uneven load of each node in the cluster. The experimental results show that the modified algorithm not only overcomes the shortcoming of MRPrePost\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{MRPrePost}}$$\end{document} in the big data environment, but also greatly reduces the time and space complexity. Finally, the specific applications of PFIMD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{PFIMD}}$$\end{document} algorithm in several multimedia data sets are listed to illustrate its universality.
引用
收藏
页码:709 / 722
页数:13
相关论文
共 50 条
  • [1] PFIMD: a parallel MapReduce-based algorithm for frequent itemset mining
    Mao, Yimin
    Geng, Junhao
    Mwakapesa, Deborah Simon
    Nanehkaran, Yaser Ahangari
    Chi, Zhang
    Deng, Xiaoheng
    Chen, Zhigang
    [J]. MULTIMEDIA SYSTEMS, 2021, 27 (04) : 709 - 722
  • [2] MapReduce-based Frequent Itemset Mining for Analysis of Electronic Evidence
    Jiang, Xueqing
    Sun, Guozi
    [J]. 2013 EIGHTH INTERNATIONAL WORKSHOP ON SYSTEMATIC APPROACHES TO DIGITAL FORENSIC ENGINEERING (SADFE), 2013,
  • [3] MapReduce-based Closed Frequent Itemset Mining with Efficient Redundancy Filtering
    Wang, Su-Qi
    Yang, Yu-Bin
    Chen, Guang-Peng
    Gao, Yang
    Zhang, Yao
    [J]. 12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2012), 2012, : 449 - 453
  • [4] A Parallel Algorithm for Approximate Frequent Itemset Mining using MapReduce
    Fumarola, Fabio
    Malerba, Donato
    [J]. 2014 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING & SIMULATION (HPCS), 2014, : 335 - 342
  • [5] MapReduce Based Frequent Itemset Mining Algorithm on Stream Data
    Chaudhary, Hemant
    Yadav, Deepak Kumar
    Bhatnagar, Rajat
    Chandrasekhar, Uddagiri
    [J]. 2015 GLOBAL CONFERENCE ON COMMUNICATION TECHNOLOGIES (GCCT), 2015, : 586 - 591
  • [6] A parallel algorithm for frequent itemset mining
    Li, L
    Zhai, DH
    Fan, J
    [J]. PARALLEL AND DISTRIBUTED COMPUTING, APPLICATIONS AND TECHNOLOGIES, PDCAT'2003, PROCEEDINGS, 2003, : 868 - 871
  • [7] A Generalized Parallel Algorithm for Frequent Itemset Mining
    Craus, Mitica
    Archip, Alexandru
    [J]. PROCEEDINGS OF THE 12TH WSEAS INTERNATIONAL CONFERENCE ON COMPUTERS , PTS 1-3: NEW ASPECTS OF COMPUTERS, 2008, : 520 - +
  • [8] A Highly Parallel Algorithm for Frequent Itemset Mining
    Mesa, Alejandro
    Feregrino-Uribe, Claudia
    Cumplido, Rene
    Hernandez-Palancar, Jose
    [J]. ADVANCES IN PATTERN RECOGNITION, 2010, 6256 : 291 - +
  • [9] ParallelCharMax: An Effective Maximal Frequent Itemset Mining Algorithm Based on MapReduce Framework
    Gahar, Rania Mkhinini
    Arfaoui, Olfa
    Sassi Hidri, Minyar
    Ben Hadj-Alouane, Nejib
    [J]. 2017 IEEE/ACS 14TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2017, : 571 - 578
  • [10] Frequent Itemset Mining using Improved Apriori Algorithm with MapReduce
    Tribhuvan, Seema A.
    Gavai, Nitin R.
    Vasgi, Bharti P.
    [J]. 2017 INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, CONTROL AND AUTOMATION (ICCUBEA), 2017,