An order-theoretic characterization of the Howard–Bachmann-hierarchy

被引:0
|
作者
Jeroen Van der Meeren
Michael Rathjen
Andreas Weiermann
机构
[1] Ghent University,Department of Mathematics
[2] University of Leeds,Department of Pure Mathematics
来源
关键词
Well-partial-orderings; Kruskal’s theorem; Howard–Bachmann number; Ordinal notation systems; Natural well-orderings; Maximal order type; Collapsing function; Recursively defined trees; Tree-embeddabilities; Proof-theoretical ordinal; Impredicative theory; Independence results; Minimal bad sequence; 03B30; 03E10; 03E35; 03F03; 03F05; 03F15; 03F35; 06A06;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we provide an intrinsic characterization of the famous Howard–Bachmann ordinal in terms of a natural well-partial-ordering by showing that this ordinal can be realized as a maximal order type of a class of generalized trees with respect to a homeomorphic embeddability relation. We use our calculations to draw some conclusions about some corresponding subsystems of second order arithmetic. All these subsystems deal with versions of light-face Π11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPi ^1_1$$\end{document}-comprehension.
引用
收藏
页码:79 / 118
页数:39
相关论文
共 50 条