Parabolic equations with dynamical boundary conditions and source terms on interfaces

被引:0
|
作者
A. F. M. ter Elst
M. Meyries
J. Rehberg
机构
[1] The University of Auckland,Department of Mathematics
[2] Karlsruhe Institute of Technology,Department of Mathematics
[3] Weierstrass Institute,undefined
关键词
Parabolic equation; Quasilinear parabolic problem; Mixed boundary condition; Dynamical boundary condition; Maximal parabolic ; -regularity; Nonsmooth geometry; Nonsmooth coefficients; 35K20; 35K59; 35M13; 35R05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider parabolic equations with mixed boundary conditions and domain inhomogeneities supported on a lower dimensional hypersurface, enforcing a jump in the conormal derivative. Only minimal regularity assumptions on the domain and the coefficients are imposed. It is shown that the corresponding linear operator enjoys maximal parabolic regularity in a suitable \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-setting. The linear results suffice to treat also the corresponding nondegenerate quasilinear problems.
引用
收藏
页码:1295 / 1318
页数:23
相关论文
共 50 条